cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048268 Smallest palindrome greater than n in bases n and n+1.

Original entry on oeis.org

6643, 10, 46, 67, 92, 121, 154, 191, 232, 277, 326, 379, 436, 497, 562, 631, 704, 781, 862, 947, 1036, 1129, 1226, 1327, 1432, 1541, 1654, 1771, 1892, 2017, 2146, 2279, 2416, 2557, 2702, 2851, 3004, 3161, 3322, 3487, 3656, 3829, 4006, 4187, 4372, 4561
Offset: 2

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

From A.H.M. Smeets, Jun 19 2019: (Start)
In the following, dig(expr) stands for the digit that represents the value of expression expr, and . stands for concatenation.
As for the naming of this sequence, the trivial 1 digit palindromes 0..dig(n-1) are excluded.
If a number m is palindromic in bases n and n+1, then m has an odd number of digits when represented in base n.
All three digit numbers in base n, that are palindromic in bases n and n+1 are given by:
101_3 22_4 for n = 3,
232_n 1.dig(n).1_(n+1)
343_n 2.dig(n-1).2_(n+1)
up to and including
dig(n-2).dig(n-1).dig(n-2)n dig(n-3).4.dig(n-3)(n+1) for n > 3, and
dig(n-1).0.dig(n-1)n dig(n-3).5.dig(n-3)(n+1) for n > 4.
Let d_L(n) be the number of integers with L digits in base n (L being odd), being palindromic in bases n and n+1, then:
d_1(n) = n for n >= 2 (see above),
d_3(n) = n-2 for n >= 5 (see above),
d_5(n) = n-1 for n >= 7 and n == 1 (mod 3),
d_5(n) = n-4 for n >= 7 and n in {0, 2} (mod 3), and
it seems that d_7(n) is of order O(n^2*log(n)) for n large enough. (End)

Examples

			a(14) = 2*14^2 + 3*14 + 2 = 436, which is 232_14 and 1e1_15.
		

Crossrefs

Programs

  • Mathematica
    Do[ k = n + 2; While[ RealDigits[ k, n + 1 ][ [ 1 ] ] != Reverse[ RealDigits[ k, n + 1 ][ [ 1 ] ] ] || RealDigits[ k, n ][ [ 1 ] ] != Reverse[ RealDigits[ k, n ][ [ 1 ] ] ], k++ ]; Print[ k ], {n, 2, 75} ]
    palQ[n_Integer, base_Integer] := Block[{idn = IntegerDigits[n, base]}, idn == Reverse[idn]]; f[n_] := Block[{k = n + 2}, While[ !palQ[k, n] || !palQ[k, n + 1], k++ ]; k]; Table[ f[n], {n, 2, 48}] (* Robert G. Wilson v, Sep 29 2004 *)
  • PARI
    isok(j, n) = my(da=digits(j,n), db=digits(j,n+1)); (Vecrev(da)==da) && (Vecrev(db)==db);
    a(n) = {my(j = n); while(! isok(j, n), j++); j;} \\ Michel Marcus, Nov 16 2017
    
  • PARI
    Vec(x^2*(6643 - 19919*x + 19945*x^2 - 6684*x^3 + 19*x^4) / (1 - x)^3 + O(x^50)) \\ Colin Barker, Jun 30 2019

Formula

a(n) = 2n^2 + 3n + 2 for n >= 4 (which is 232_n and 1n1_(n+1)).
a(n) = A130883(n+1) for n > 3. - Robert G. Wilson v, Oct 08 2014
From Colin Barker, Jun 30 2019: (Start)
G.f.: x^2*(6643 - 19919*x + 19945*x^2 - 6684*x^3 + 19*x^4) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>6.
(End)

Extensions

More terms from Robert G. Wilson v, Aug 14 2000