A048269 First palindrome greater than n+2 in bases n+2 and n.
5, 26, 21, 24, 154, 40, 121, 60, 181, 84, 253, 112, 337, 144, 433, 180, 541, 220, 661, 264, 793, 312, 937, 364, 1093, 420, 1261, 480, 1441, 544, 1633, 612, 1837, 684, 2053, 760, 2281, 840, 2521, 924, 2773, 1012, 3037, 1104, 3313, 1200, 3601, 1300, 3901
Offset: 2
Examples
a(15)= (15+3)/2*15+(15+3)/2=144, which is (99) in base 15 and (88) in base 17.
Links
- Colin Barker, Table of n, a(n) for n = 2..1000
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Crossrefs
Cf. A048268.
Programs
-
Mathematica
Do[ k = n + 3; While[ RealDigits[ k, n + 2 ][[ 1 ] ] != Reverse[ RealDigits[ k, n + 2 ][[ 1 ] ] ] || RealDigits[ k, n ][[ 1 ] ] != Reverse[ RealDigits[ k, n ][[ 1 ] ] ], k++ ]; Print[ k ], {n, 2, 50} ] LinearRecurrence[{0,3,0,-3,0,1},{5,26,21,24,154,40,121,60,181,84,253},50] (* Harvey P. Dale, May 12 2025 *)
-
PARI
Vec(x^2*(5 + 26*x + 6*x^2 - 54*x^3 + 106*x^4 + 46*x^5 - 283*x^6 - 14*x^7 + 259*x^8 - 81*x^10) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jun 30 2019
Formula
n even and n >= 8: a(n) = n^2+(n/2+3)*n+1 (which is (1 n/2+3 1) in base n and (1 n/2-2 1) in base n+2).
n odd and n >= 5: a(n) = (n+1)*(n+3)/2 (which is ((n+3)/2 (n+3)/2) in base n and ((n+1)/2 (n+1)/2) in base n+2).
From Colin Barker, Jun 30 2019: (Start)
G.f.: x^2*(5 + 26*x + 6*x^2 - 54*x^3 + 106*x^4 + 46*x^5 - 283*x^6 - 14*x^7 + 259*x^8 - 81*x^10) / ((1 - x)^3*(1 + x)^3).
a(n) = (5 + (-1)^(1 + n) + 2*(5 + (-1)^n)*n + 2*(2 + (-1)^n)*n^2) / 4 for n>6.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>10.
(End)
Extensions
More terms from Robert G. Wilson v, Aug 15 2000
Comments