cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048269 First palindrome greater than n+2 in bases n+2 and n.

Original entry on oeis.org

5, 26, 21, 24, 154, 40, 121, 60, 181, 84, 253, 112, 337, 144, 433, 180, 541, 220, 661, 264, 793, 312, 937, 364, 1093, 420, 1261, 480, 1441, 544, 1633, 612, 1837, 684, 2053, 760, 2281, 840, 2521, 924, 2773, 1012, 3037, 1104, 3313, 1200, 3601, 1300, 3901
Offset: 2

Views

Author

Ulrich Schimke (ulrschimke(AT)aol.com)

Keywords

Comments

a(2), a(3), a(4) and a(6) must be found explicitly.

Examples

			a(15)= (15+3)/2*15+(15+3)/2=144, which is (99) in base 15 and (88) in base 17.
		

Crossrefs

Cf. A048268.

Programs

  • Mathematica
    Do[ k = n + 3; While[ RealDigits[ k, n + 2 ][[ 1 ] ] != Reverse[ RealDigits[ k, n + 2 ][[ 1 ] ] ] || RealDigits[ k, n ][[ 1 ] ] != Reverse[ RealDigits[ k, n ][[ 1 ] ] ], k++ ]; Print[ k ], {n, 2, 50} ]
    LinearRecurrence[{0,3,0,-3,0,1},{5,26,21,24,154,40,121,60,181,84,253},50] (* Harvey P. Dale, May 12 2025 *)
  • PARI
    Vec(x^2*(5 + 26*x + 6*x^2 - 54*x^3 + 106*x^4 + 46*x^5 - 283*x^6 - 14*x^7 + 259*x^8 - 81*x^10) / ((1 - x)^3*(1 + x)^3) + O(x^50)) \\ Colin Barker, Jun 30 2019

Formula

n even and n >= 8: a(n) = n^2+(n/2+3)*n+1 (which is (1 n/2+3 1) in base n and (1 n/2-2 1) in base n+2).
n odd and n >= 5: a(n) = (n+1)*(n+3)/2 (which is ((n+3)/2 (n+3)/2) in base n and ((n+1)/2 (n+1)/2) in base n+2).
From Colin Barker, Jun 30 2019: (Start)
G.f.: x^2*(5 + 26*x + 6*x^2 - 54*x^3 + 106*x^4 + 46*x^5 - 283*x^6 - 14*x^7 + 259*x^8 - 81*x^10) / ((1 - x)^3*(1 + x)^3).
a(n) = (5 + (-1)^(1 + n) + 2*(5 + (-1)^n)*n + 2*(2 + (-1)^n)*n^2) / 4 for n>6.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>10.
(End)

Extensions

More terms from Robert G. Wilson v, Aug 15 2000