A048458
'Prime last odd terms' from generation 2 onwards.
Original entry on oeis.org
7, 23, 67, 179, 1109, 17427659, 1586875049, 7021048691, 1104052140838673681, 80729882077782801781, 49474191359283212247841, 152695677551802424534973144788818335406948326813, 50258816309715893690860594601285860231033059311672877749
Offset: 1
A354430
First diagonal of an array, generated from the sequence of the nonprimes.
Original entry on oeis.org
1, 7, 22, 58, 142, 334, 766, 1726, 3837, 8435, 18364, 39646, 84986, 181117, 384160, 811676, 1709425, 3590213, 7522354, 15728427, 32827027, 68405533, 142344708, 295824870, 614046159, 1273068141, 2636250146, 5452584131, 11264148401, 23242423457, 47903544728
Offset: 1
1 4 6 8 9 10 12 14 15 16 18 20 21 ...
7 12 15 18 21 24 27 30 33 36 39 ...
22 30 36 42 48 54 60 66 72 ...
58 72 84 96 108 120 132 ...
142 168 192 216 240 ...
334 384 432 ...
766 ...
-
from sympy import composite
from functools import lru_cache
@lru_cache(maxsize=None)
def T(r, k):
if r == 1: return 1 if k == 1 else composite(k-1)
return T(r-1, k) + T(r-1, k+2)
def a(n): return T(n, 1)
print([a(n) for n in range(1, 30)]) # Michael S. Branicky, May 28 2022
Showing 1-2 of 2 results.
Comments