cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048575 Pisot sequences L(2,5), E(2,5).

Original entry on oeis.org

2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 165580141, 433494437, 1134903170, 2971215073, 7778742049, 20365011074, 53316291173, 139583862445, 365435296162, 956722026041
Offset: 0

Views

Author

Keywords

References

  • Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

Crossrefs

Subsequence of A001519. See A008776 for definitions of Pisot sequences.

Programs

  • Magma
    [Fibonacci(2*n+3): n in [0..40]]; // Vincenzo Librandi, Jul 12 2015
    
  • Mathematica
    LinearRecurrence[{3, -1}, {2, 5}, 40] (* Vincenzo Librandi, Jul 12 2015 *)
  • PARI
    pisotE(nmax, a1, a2) = {
      a=vector(nmax); a[1]=a1; a[2]=a2;
      for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));
      a
    }
    pisotE(50, 2, 5) \\ Colin Barker, Jul 27 2016

Formula

a(n) = A000045(2n+3). a(n) = 3a(n-1) - a(n-2).
G.f.: (2-x)/(1-3x+x^2). [Philippe Deléham, Nov 16 2008]
a(n) = 2*A001906(n+1)-A001906(n). - R. J. Mathar, Jun 11 2019