A048575 Pisot sequences L(2,5), E(2,5).
2, 5, 13, 34, 89, 233, 610, 1597, 4181, 10946, 28657, 75025, 196418, 514229, 1346269, 3524578, 9227465, 24157817, 63245986, 165580141, 433494437, 1134903170, 2971215073, 7778742049, 20365011074, 53316291173, 139583862445, 365435296162, 956722026041
Offset: 0
References
- Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Boothby, T.; Burkert, J.; Eichwald, M.; Ernst, D. C.; Green, R. M.; Macauley, M. On the cyclically fully commutative elements of Coxeter groups, J. Algebr. Comb. 36, No. 1, 123-148 (2012), Section 5.1
- Tanya Khovanova, Recursive Sequences
- Index entries for linear recurrences with constant coefficients, signature (3,-1)
Programs
-
Magma
[Fibonacci(2*n+3): n in [0..40]]; // Vincenzo Librandi, Jul 12 2015
-
Mathematica
LinearRecurrence[{3, -1}, {2, 5}, 40] (* Vincenzo Librandi, Jul 12 2015 *)
-
PARI
pisotE(nmax, a1, a2) = { a=vector(nmax); a[1]=a1; a[2]=a2; for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2)); a } pisotE(50, 2, 5) \\ Colin Barker, Jul 27 2016
Formula
a(n) = A000045(2n+3). a(n) = 3a(n-1) - a(n-2).
G.f.: (2-x)/(1-3x+x^2). [Philippe Deléham, Nov 16 2008]