A048585 Pisot sequence L(6,7).
6, 7, 9, 12, 16, 22, 31, 44, 63, 91, 132, 192, 280, 409, 598, 875, 1281, 1876, 2748, 4026, 5899, 8644, 12667, 18563, 27204, 39868, 58428, 85629, 125494, 183919, 269545, 395036, 578952, 848494, 1243527, 1822476, 2670967, 3914491, 5736964, 8407928, 12322416, 18059377
Offset: 0
Keywords
Links
Crossrefs
See A008776 for definitions of Pisot sequences.
Programs
-
Magma
Lxy:=[6,7]; [n le 2 select Lxy[n] else Ceiling(Self(n-1)^2/Self(n-2)): n in [1..50]]; // Bruno Berselli, Feb 05 2016
-
Maple
L := proc(a0,a1,n) option remember; if n = 0 then a0 ; elif n = 1 then a1; else ceil( procname(a0,a1,n-1)^2/procname(a0,a1,n-2)) ; end if; end proc: A048585 := proc(n) L(6,7,n) ; end proc:
-
Mathematica
RecurrenceTable[{a[0] == 6, a[1] == 7, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 50}] (* Bruno Berselli, Feb 05 2016 *)
-
PARI
first(n)=my(v=vector(n+1)); v[1]=6; v[2]=7; for(i=3,#v,v[i]=ceil(v[i-1]^2/v[i-2])); v \\ Charles R Greathouse IV, Feb 12 2016
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - a(n-4) (holds at least up to n = 50000 but is not known to hold in general).