A048587 Pisot sequence L(6,10).
6, 10, 17, 29, 50, 87, 152, 266, 466, 817, 1433, 2514, 4411, 7740, 13582, 23834, 41825, 73397, 128802, 226031, 396656, 696082, 1221538, 2143649, 3761841, 6601570, 11584947, 20330164, 35676950, 62608682, 109870577, 192809421, 338356946, 593775047, 1042002568
Offset: 0
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
Programs
-
Magma
Lxy:=[6,10]; [n le 2 select Lxy[n] else Ceiling(Self(n-1)^2/Self(n-2)): n in [1..40]]; // Bruno Berselli, Feb 05 2016
-
Mathematica
RecurrenceTable[{a[0] == 6, a[1] == 10, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 0, 40}] (* Bruno Berselli, Feb 05 2016 *)
-
PARI
pisotL(nmax, a1, a2) = { a=vector(nmax); a[1]=a1; a[2]=a2; for(n=3, nmax, a[n] = ceil(a[n-1]^2/a[n-2])); a } pisotL(50, 6, 10) \\ Colin Barker, Aug 07 2016
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - a(n-4) (holds at least up to n = 1000 but is not known to hold in general).