A048600 Array a(n,k) = number of colors that can be produced by n units of paint from k primary colors, read by descending antidiagonals.
1, 1, 2, 1, 3, 3, 1, 5, 6, 4, 1, 7, 13, 10, 5, 1, 11, 22, 26, 15, 6, 1, 13, 40, 51, 45, 21, 7, 1, 19, 55, 103, 100, 71, 28, 8, 1, 23, 88, 161, 221, 176, 105, 36, 9, 1, 29, 118, 277, 386, 422, 287, 148, 45, 10
Offset: 1
Examples
Table array begins: 1 1 1 1 1 2 3 5 7 11 3 6 13 22 40 4 10 26 51 103 5 15 45 100 221 ... a(3,2) = 6 because you can take each color once, or mix two colors.
Programs
-
Mathematica
max = 10; col[k_] := Accumulate[ Table[ Sum[ MoebiusMu[n/d]*Product[d+j, {j, 1, k}]/k!, {d, Divisors[n]}], {n, 1, max}]]; t = Table[col[k], {k, 0, max-1}] // Transpose; Flatten[ Table[ t[[n-k+1, k]], {n, 1, max}, {k, 1, n}]] (* Jean-François Alcover, Dec 26 2012 *)
Formula
All partitions of size n: if GCD is not 1, skip; else: fill the partition with zeros to get k numbers; count occurrences of each number (e.g.: 2 2 1 0 0 0 becomes 2 1 3); compute multinomial of k over these digits (e.g. 2 1 3 becomes 6!/(2!*1!*3!) = 60); sum.
Extensions
Name edited by Michel Marcus, Aug 11 2024