cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A048790 Array read by antidiagonals: T(n,k) = number of rooted n-dimensional polycubes with k cells, with no symmetries removed (n >= 1, k >= 1).

Original entry on oeis.org

1, 1, 2, 1, 4, 3, 1, 6, 18, 4, 1, 8, 45, 76, 5, 1, 10, 84, 344, 315, 6, 1, 12, 135, 936, 2670, 1296, 7, 1, 14, 198, 1980, 10810, 20886, 5320, 8, 1, 16, 273, 3604, 30475, 127632, 164514, 21800, 9, 1, 18, 360, 5936, 69405, 483702, 1531180, 1303304, 89190, 10, 1
Offset: 1

Views

Author

Keywords

Examples

			Array begins:
n\k 1..2...3.....4......5.......6........7........8........9.....10......11......12.......13
1 | 1..2...3.....4......5.......6........7........8........9.....10......11......12.......13
2 | 1..4..18....76....315....1296.....5320....21800....89190.364460.1487948.6070332.24750570
3 | 1..6..45...344...2670...20886...164514..1303304.10375830
4 | 1..8..84...936..10810..127632..1531180.18589840
5 | 1.10.135..1980..30475..483702..7847525
6 | 1.12.198..3604..69405.1386048.28403620
7 | 1.14.273..5936.137340.3307878
8 | 1.16.360..9104.246020
9 | 1.18.459.13236.409185
		

References

  • Dan Hoey, Bill Gosper and Richard C. Schroeppel, Discussions in Math-Fun Mailing list, circa Jul 13 1999.

Crossrefs

Rows give A048663-A048668, A094101. Columns give A094159-A094161. Cf. A094100.

Extensions

More terms from Joshua Zucker, Aug 14 2006
Edited by N. J. A. Sloane, Sep 15 2008 at the suggestion of R. J. Mathar

A151833 Number of fixed 7-dimensional polycubes with n cells.

Original entry on oeis.org

1, 7, 91, 1484, 27468, 551313, 11710328, 259379101, 5933702467, 139272913892, 3338026689018, 81406063278113, 2014611366114053, 50486299825273271
Offset: 1

Views

Author

N. J. A. Sloane, Jul 12 2009

Keywords

References

  • G. Aleksandrowicz and G. Barequet, Counting d-dimensional polycubes and nonrectangular planar polyominoes, Int. J. of Computational Geometry and Applications, 19 (2009), 215-229.
  • G. Aleksandrowicz and G. Barequet, Counting polycubes without the dimensionality curse, Discrete Mathematics, 309 (2009), 4576-4583.
  • G. Aleksandrowicz and G. Barequet, Parallel enumeration of lattice animals, Proc. 5th Int. Frontiers of Algorithmics Workshop, Zhejiang, China, Lecture Notes in Computer Science, 6681, Springer-Verlag, 90-99, May 2011.
  • Gill Barequet, Solomon W. Golomb, and David A. Klarner, Polyominoes. (This is a revision, by G. Barequet, of the chapter of the same title originally written by the late D. A. Klarner for the first edition, and revised by the late S. W. Golomb for the second edition.) Preprint, 2016, http://www.csun.edu/~ctoth/Handbook/chap14.pdf
  • R. Barequet, G. Barequet, and G. Rote, Formulae and growth rates of high-dimensional polycubes, Combinatorica, 30 (2010), 257-275.
  • S. Luther and S. Mertens, Counting lattice animals in high dimensions, Journal of Statistical Mechanics: Theory and Experiment, 2011 (9), 546-565.

Crossrefs

Programs

Formula

a(n) = A048668(n)/n. - Jean-François Alcover, Sep 12 2019, after Andrew Howroyd in A048668.

Extensions

More terms from Gadi Aleksandrowicz (gadial(AT)gmail.com), Mar 21 2010
a(11)-a(14) from Luther and Mertens by Gill Barequet, Jun 12 2011
Showing 1-2 of 2 results.