A048702 Binary palindromes of even length divided by 3.
0, 1, 3, 5, 11, 15, 17, 21, 43, 51, 55, 63, 65, 73, 77, 85, 171, 187, 195, 211, 215, 231, 239, 255, 257, 273, 281, 297, 301, 317, 325, 341, 683, 715, 731, 763, 771, 803, 819, 851, 855, 887, 903, 935, 943, 975, 991
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
Crossrefs
Programs
-
Maple
# Two unproved formulas which are not based upon first generating a palindrome and then dividing by 3, recursive and more direct: # Here d is 2^(the distance between the most and least significant 1-bit of n): bper3_rec := proc(n) option remember; local d; if(0 = n) then RETURN(0); fi; d := 2^([ log2(n) ]-A007814[ n ]); if(1 = d) then RETURN((2*bper3_rec(n-1))+d); else RETURN(bper3_rec(n-1)+d); fi; end; # or more directly (after K. Atanassov's formula for partial sums of A007814): bper3_direct := proc(n) local l,j; l := [ log2(n) ]; RETURN((2/3*((2^(2*l))-1))+1+ sum('(2^(l-j)*floor((n-(2^l)+2^j)/(2^(j+1))))','j'=0..l)); end; # Can anybody find an even simpler closed form? See A005187 for inspiration.
-
Mathematica
Join[{0}, Reap[For[k = 1, k < 3000, k += 2, bb = IntegerDigits[k, 2]; If[bb == Reverse[bb], If[EvenQ[Length[bb]], Sow[k/3]]]]][[2, 1]]] (* Jean-François Alcover, Mar 04 2016 *)
Comments