A048703 Numbers which in base 4 are palindromes and have an even number of digits.
0, 5, 10, 15, 65, 85, 105, 125, 130, 150, 170, 190, 195, 215, 235, 255, 1025, 1105, 1185, 1265, 1285, 1365, 1445, 1525, 1545, 1625, 1705, 1785, 1805, 1885, 1965, 2045, 2050, 2130, 2210, 2290, 2310, 2390
Offset: 0
Examples
Each a(n) is obtained by concatenating the original base-4 expansion of n (which comes to the left hand, i.e., the most significant side) with its mirror-image (which comes to the right hand, i.e., the least significant side). For example, for a(4) we have 4 = '10' in base 4, which concatenated with its reversal '01' yields '1001', which when converted back to decimal yields 1*64 + 0*16 + 0*4 + 1*1 = 65, thus a(4)=65.
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000 (terms 0..4095 from Antti Karttunen)
Crossrefs
Programs
-
Maple
A048703(n) := (n) -> (2^(floor_log_2_coarse(n)+1))*n + sum('(bit_i(n, i+((-1)^i))*(2^(floor_log_2_coarse(n)-i)))', 'i'=0..floor_log_2_coarse(n)); bit_i := (x,i) -> `mod`(floor(x/(2^i)),2); # Following is like floor_log_2 but even results are incremented by one: floor_log_2_coarse := proc(n) local nn,i: nn := n; for i from -1 to n do if(0 = nn) then RETURN(i+(1-(i mod 2))); fi: nn := floor(nn/2); od: end:
-
Mathematica
q[n_] := EvenQ[IntegerLength[n, 4]] && PalindromeQ[IntegerDigits[n, 4]]; Select[Range[0, 2400, 5], q] (* Amiram Eldar, May 27 2024 *)
-
Python
def A048703(n): s = bin(n-1)[2:] if len(s) % 2: s = '0'+s t = [s[i:i+2] for i in range(0,len(s),2)] return int(''.join(t+t[::-1]),2) # Chai Wah Wu, Feb 26 2021
Formula
a(0) = 0, and for n >= 1, a(n) = A030103(n) + (n * A000302(A110591(n))). - Antti Karttunen, Oct 30 2013
a(n) = 5*A048704(n). [This is just a consequence of the definition of A048704.] - Antti Karttunen, Jul 25 2013
Comments