A048705 The rule numbers for 1-D CA composed of Rules "90" and "150" so that each direction occurs only once.
90, 150, 1721342310, 140117185019831836588493434554119984790, 113427455640312821160607117168492587690
Offset: 1
Keywords
Crossrefs
Programs
-
Maple
# The definitions of bit_i and floor_log_2 are given in A048700 rule90 := proc(seed,n) option remember: local sl, i: if (0 = n) then (seed) else sl := floor_log_2(seed+1); add(((bit_i(rule90(seed,n-1),i)+bit_i(rule90(seed,n-1),i-2)) mod 2)*(2^i), i=0..(2*n)+sl) fi: end: rule150 := proc(seed,n) option remember: local sl, i: if (0 = n) then (seed) else sl := floor_log_2(seed+1); add(((bit_i(rule150(seed,n-1),i)+bit_i(rule150(seed,n-1),i-1)+bit_i(rule150(seed,n-1),i-2)) mod 2)*(2^i), i=0..((2*n)+sl)) fi: end: # Rule 90 and Rule 150 are commutative in respect to each other: rule90x150combination := proc(n) local p,q,i; p := extended_A020652[ n ]; # the Rule 150 component [ 0,1,op(A020652) ] q := extended_A020653[ n ]; # the Rule 90 component [ 1,0,op(A020653) ] RETURN(sum('bit_i(rule150(rule90(i,q),p),(2*(p+q))) * (2^i)','i'=0..(2^((2*(p+q))+1))-1)); end:
Formula
a(n) = rule90x150combination(n) # See the Maple procedures below.
Comments