cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048707 Numerators of ratios converging to Thue-Morse constant.

Original entry on oeis.org

0, 1, 6, 105, 27030, 1771476585, 7608434000728254870, 140350834813144189858090274002849666665, 47758914269546354982683078068829456704164423862093743397580034411621752859030
Offset: 0

Views

Author

Antti Karttunen, Mar 09 1999

Keywords

Comments

Also interpret each iteration of the construction of the Thue-Morse constant as a binary number converted to a decimal number. Thus (0_b, 01_b, 0110_b, 01101001_b ...) gives the present sequence in decimal. - Robert G. Wilson v, Sep 22 2006
a(n) corresponds to the binary value of the truth-table for the xor operator with n-arguments. - Joe Riel (joer(AT)san.rr.com), Jan 31 2010

Crossrefs

The denominators are given by A001146. Consists of every 2^n-th term of A019300. Cf. A048708 (same sequence in hexadecimal) and A014571, A010060, A014572.

Programs

  • Mathematica
    Table[ FromDigits[ Nest[ Flatten[ #1 /. {0 -> {0, 1}, 1 -> {1, 0}}] &, {0}, n], 2], {n, 0, 8}] (* Robert G. Wilson v, Sep 22 2006 *)
  • Scheme
    ;returns all but the last element of a list
    (define rdc(lambda(x)(if(null? (cdr x))'()(cons (car x) (rdc (cdr x))))))
    ;gets the two's complement of a given bit
    (define twosComplement (lambda (x)(if (eq? x #\0) "1" "0" )))
    ;gets the two's complement of a string
    (define complementOfCurrent (lambda (x y z)(if (eq? (string-length y) z) y (complementOfCurrent (list->string (cdr (string->list x))) (string-append y (twosComplement (string-ref x 0))) z))))
    ;concatenates the two's complement of a string onto the current string, giving the next element in the TM sequence
    (define concatenateComplement (lambda (x i)(if(zero? i) x (concatenateComplement(string-append x (complementOfCurrent x "" (string-length x)))(- i 1)))))
    ;generates the TM sequence of length 2^x
    (define generateThue (lambda (x)(concatenateComplement "0" x)))
    ;if a bit is 1, get 2^i, where i is the index of that bit from right-left
    (define F (lambda (c i)(if (eq? c #\1) (expt 2 i) 0)))
    ;gathers the sum of 2^index for all indices corresponding to a 1
    (define fn (lambda (x sum i stop)(if (eq? i stop) sum (fn (list->string (rdc (string->list x))) (+ sum (F (string-ref x (-(string-length x) 1)) i)) (+ i 1)stop))))
    (define f (lambda (x)(fn (generateThue x) 0 0 (string-length (generateThue x)))))
    ;format: (f x)
    ;example: (f 10)
    ;by Ariel S Koiman, Apr 23 2013

Formula

a(0) = 0, a(n) = (a(n-1)+1)*((2^(2^(n-1)))-1).