A048753 Composite numbers k whose product of aliquot divisors divided by number of aliquot divisors is an integer.
4, 6, 15, 16, 20, 21, 27, 33, 36, 39, 42, 45, 48, 50, 51, 56, 57, 69, 70, 75, 87, 93, 100, 105, 111, 120, 123, 129, 132, 141, 154, 159, 162, 175, 177, 182, 183, 189, 196, 198, 201, 210, 213, 219, 220, 231, 237, 238, 245, 249, 256, 266, 267, 270, 273, 275, 291
Offset: 1
Examples
For k=6, the product of aliquot divisors is 3*2*1=6; the number of aliquot divisors is 3; 6/3 = 2 (an integer), so 6 is a term.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
padQ[n_]:=Module[{ad=Most[Divisors[n]]},!PrimeQ[n]&&Divisible[Times@@ad, Length[ad]]]; Select[Range[2,300],padQ] (* Harvey P. Dale, May 07 2012 *)