A048757 Sum_{i=0..2n} (C(2n,i) mod 2)*Fibonacci(i+2) = Sum_{i=0..n} (C(n,i) mod 2)*Fibonacci(2i+2).
1, 4, 9, 33, 56, 203, 441, 1596, 2585, 9353, 20304, 73461, 124033, 448756, 974169, 3524577, 5702888, 20633243, 44791065, 162055596, 273617239, 989956471, 2149017696, 7775219067, 12591974497, 45558191716, 98898651657
Offset: 0
Examples
1 = Fib(2) = 1; 101 = Fib(4) + Fib(2) = 3 + 1 = 4; 10001 = Fib(6) + Fib(2) = 8 + 1 = 9; 1010101 = Fib(8) + Fib(6) + Fib(4) + Fib(2) = 21 + 8 + 3 + 1 = 33; etc.
Links
- Antti Karttunen, On Pascal's Triangle Modulo 2 in Fibonacci Representation, Fibonacci Quarterly, 42 (2004), 38-46.
Crossrefs
Programs
-
Mathematica
Table[Sum[Mod[Binomial[2n, i], 2] Fibonacci[i + 2], {i, 0, 2n}], {n, 0, 19}] (* Alonso del Arte, Apr 27 2014 *)
Comments