cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A309038 Irregular triangle T read by rows: given a square made of n^2 squares of unit area, T(n, k) is the longest perimeter that can be obtained by removing k of n^2 squares such that the modified figure remains connected and without holes (n >= 0 and 0 <= k <= n^2).

Original entry on oeis.org

0, 4, 0, 8, 8, 8, 4, 0, 12, 14, 16, 18, 20, 16, 12, 8, 4, 0, 16, 18, 20, 22, 24, 26, 28, 28, 28, 26, 24, 20, 16, 12, 8, 4, 0, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 42, 40, 38, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 56, 56, 56, 56, 56, 56, 52, 48, 44, 40, 36, 32, 28, 24, 20, 16, 12, 8, 4, 0
Offset: 0

Views

Author

Stefano Spezia, Jul 08 2019

Keywords

Comments

All the terms of this sequence are even numbers (A005843).
In the figure, two unit area squares can be connected in a corner or sideways.
Every n-th row of the triangle is made of almost four successive finite arithmetic progressions characterized respectively by the following common differences: 2, 0, -2, -4. If we let h_i(n) be the number of first differences of i-th progression (i = 1,2,3,4), we have that 4*n + 2*h_1(n) - 2*h_3(n) - 4*h_4(n) = 0 and h_1(n) + h_2(n) + h_3(n) + h_4(n) = n^2.

Examples

			The triangle T(n, k) begins:
---+-------------------------------------------------------------------
n\k|  0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16
---+-------------------------------------------------------------------
0  |  0
1  |  4   0
2  |  8   8   8   4   0
3  | 12  14  16  18  20  16  12   8   4   0
4  | 16  18  20  22  24  26  28  28  28  26  24  20  16  12   8   4   0
...
Here are the values of h_i's for the first seven rows of the triangle T:
n    h_1(n)   h_2(n)   h_3(n)   h_4(n)
--------------------------------------
0         0        0        0        0
1         0        0        0        1
2         0        2        0        2
3         4        0        0        5
4         6        2        2        6
5        12        0        4        9
6        16        6        0       14
...
Illustrations for n = 4, k=0..15 by _Andrew Howroyd_, Sep 01 2019: (Start)
   __.__.__.__    __.__.__.__    __.__.__.__    __.__.__.__
  |           |  |           |  |           |  |           |
  |           |  |__         |  |__         |  |__       __|
  |           |   __|        |   __|__      |   __|__   |__
  |__.__.__.__|  |__.__.__.__|  |__|  |__.__|  |__|  |__.__|
       (16)           (18)          (20)           (22)
   __.__.__.__    __.  .__.__    __    __.__    __    __.__
  |           |  |  |__|     |  |  |  |     |  |  |  |   __|
  |__    __.__|  |__    __.__|  |__|__|__.__|  |__|__|__|
   __|__|__.__    __|__|__.__    __|__|__.__    __|__|__.__
  |__|  |__.__|  |__|  |__.__|  |__|  |__.__|  |__|  |__.__|
      (24)            (26)          (28)           (28)
   __       __             __             __
  |  |   __|__|   __    __|__|   __    __|__|   __    __
  |__|__|__|     |__|__|__|     |__|__|__|     |__|__|__|
   __|__|__.__    __|__|__.__    __|__|__       __|__|__
  |__|  |__.__|  |__|  |__.__|  |__|  |__|     |__|  |__|
      (28)            (26)         (24)           (20)
   __    __             __
  |__|__|__|         __|__|         __             __
   __|__|         __|__|         __|__|           |__|
  |__|           |__|           |__|
      (16)         (12)            (8)             (4)
(End)
		

Crossrefs

Programs

  • Mathematica
    h4[n_]:=If[n>2,(1/8)(-29+12n+2n^2-3*Cos[n*Pi]-12*Sin[n*Pi/2]),n]; h3[n_]:=1-Cos[n*Pi]-4*KroneckerDelta[n,1]+2*KroneckerDelta[n,4]+2*Sin[n*Pi/2]; h2[n_]:=If[n>4,(1/8)(71-20n+2n^2+25Cos[n*Pi]+4Sin[n*Pi/2]),2*(KroneckerDelta[n,2]+KroneckerDelta[n,4])]; h1[n_]:=n^2-(h2[n]+h3[n]+h4[n]); T[n_,k_]:=If[0<=k<=h1[n],2(2n+k),If[h1[n]
    				

Formula

T(n, 0) = A008586(n).
T(n, k) = 2*(2*n + k) for 0 <= k <= h_1(n), T(n, k) = 2*(2*n + h_1(n)) for h_1(n) <= k <= h_1(n) + h_2(n), T(n, k) = 2*(2*(n + h_1(n)) + h_2(n) - k) for h_1(n) + h_2(n) <= k <= h_1(n) + h_2(n) + h_3(n), T(n, k) = 2*(2*(n + h_2(n) - k) + 3*h_1(n) + h_3(n)), for h_1(n) + h_2(n) + h_3(n) <= k <= n^2, where h_4(n) = n for 0 <= n <= 2 and h_4(n) = (1/8)*(-29 + 12*n + 2*n^2 - 3*cos(n*Pi) - 12*sin(n*Pi/2)) for n > 2, h_3(n) = 2*delta(n, 4) - 4*delta(n, 1) + 1 - cos(n*Pi) + 2*sin(n*Pi/2) and delta(i, j) is the Kronecker delta, h_2(n) = 2*(delta(n, 2) + delta(n, 4)) for 0 <= n <= 4 and h_2(n) = (1/8)*(71 - 20*n + 2*n^2 + 25*cos(n*Pi) + 4*sin(n*Pi/2)) for n > 4, h_1(n) = n^2 - (h_1(n) + h_2(n) + h_3(n)).
Showing 1-1 of 1 results.