cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048784 a(n) = tau(binomial(2*n,n)), where tau = number of divisors (A000005).

Original entry on oeis.org

1, 2, 4, 6, 8, 18, 24, 32, 48, 48, 48, 128, 96, 192, 384, 480, 384, 768, 1152, 1536, 2304, 2048, 2048, 3840, 3456, 4608, 6144, 3840, 8192, 20480, 10240, 12288, 18432, 36864, 36864, 49152, 24576, 32768, 98304, 92160, 73728, 245760, 262144
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    A048784 := proc(n)
        numtheory[tau](binomial(2*n,n)) ;
    end proc:
    seq(A048784(n),n=0..30) ; # R. J. Mathar, Jul 12 2024
  • Mathematica
    f[n_] := DivisorSigma[0, Binomial[2 n, n]]; Table[f@n, {n, 0, 42}] (* Robert G. Wilson v, Apr 08 2009 *)
  • PARI
    fv(n,p)=my(s);while(n\=p,s+=n);s
    a(n)=my(s=1);forprime(p=2,2*n,s*=fv(2*n,p)-2*fv(n,p)+1);s \\ Charles R Greathouse IV, Aug 21 2013

Formula

a(n) = A000005(A000984(n)). - Michel Marcus, Aug 21 2013
log(a(n)) = log(2) * (pi(2*n)-pi(n)) + log(2) * (n/log(n)) * Sum_{k=0..T} c_k/log(n)^k + O(n/log(n)^(T+2)) for any T >= 0, where c_k = Sum_{m>=1} Integral_{m+1/2..m+1} log(t)^m/t^2 dt. In particular for T = 0, log(a(n)) = 2 * log(2)^2 * (n/log(n)) + O(n/log(n)^2) (Fedorov, 2013). - Amiram Eldar, Dec 10 2024