A048784 a(n) = tau(binomial(2*n,n)), where tau = number of divisors (A000005).
1, 2, 4, 6, 8, 18, 24, 32, 48, 48, 48, 128, 96, 192, 384, 480, 384, 768, 1152, 1536, 2304, 2048, 2048, 3840, 3456, 4608, 6144, 3840, 8192, 20480, 10240, 12288, 18432, 36864, 36864, 49152, 24576, 32768, 98304, 92160, 73728, 245760, 262144
Offset: 0
Keywords
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- G. V. Fedorov, Number of divisors of the central binomial coefficient, Moscow Univ. Math. Bull., Vol. 68 (2013), pp. 194-197.
Programs
-
Maple
A048784 := proc(n) numtheory[tau](binomial(2*n,n)) ; end proc: seq(A048784(n),n=0..30) ; # R. J. Mathar, Jul 12 2024
-
Mathematica
f[n_] := DivisorSigma[0, Binomial[2 n, n]]; Table[f@n, {n, 0, 42}] (* Robert G. Wilson v, Apr 08 2009 *)
-
PARI
fv(n,p)=my(s);while(n\=p,s+=n);s a(n)=my(s=1);forprime(p=2,2*n,s*=fv(2*n,p)-2*fv(n,p)+1);s \\ Charles R Greathouse IV, Aug 21 2013
Formula
log(a(n)) = log(2) * (pi(2*n)-pi(n)) + log(2) * (n/log(n)) * Sum_{k=0..T} c_k/log(n)^k + O(n/log(n)^(T+2)) for any T >= 0, where c_k = Sum_{m>=1} Integral_{m+1/2..m+1} log(t)^m/t^2 dt. In particular for T = 0, log(a(n)) = 2 * log(2)^2 * (n/log(n)) + O(n/log(n)^2) (Fedorov, 2013). - Amiram Eldar, Dec 10 2024