A048799 Decimal expansion of Sum_{n >= 2} 1/S(n)!, where S(n) is the Kempner number A002034(n).
1, 0, 9, 3, 1, 7, 0, 4, 5, 9, 1, 9, 5, 4, 9, 0, 8, 9, 3, 9, 6, 8, 2, 0, 1, 3, 7, 0, 1, 4, 5, 2, 0, 8, 3, 2, 5, 6, 8, 9, 5, 9, 2, 1, 6, 7, 8, 9, 1, 1, 5, 4, 5, 1, 9, 0, 6, 9, 1, 9, 6, 7, 2, 1, 5, 1, 8, 1, 8, 7, 0, 3, 3, 4, 9, 9, 8, 3, 3, 5, 9, 6, 0, 4, 7, 6, 7, 5, 2, 0, 9, 4, 4, 4, 5, 2, 4, 0, 4
Offset: 1
Examples
1.09317...
References
- I. Cojocaru, S. Cojocaru, First Constant of Smarandache, Smarandache Notions Journal, Vol. 7, No. 1-2-3, 1996, 116-118.
Links
- Eric Weisstein's World of Mathematics, Smarandache Constants
Crossrefs
Programs
-
Mathematica
f[n_] := DivisorSigma[0, n! ]; s = 1; Do[s = N[s + (f[n + 1] - f[n])/(n + 1)!, 100], {n, 1, 10^4}]; RealDigits[s][[1]]
Formula
Sum (1/S(n)!), where S(n) is the Kempner function A002034 and n >= 2.
Extensions
Edited by Robert G. Wilson v and Don Reble, May 30 2002
Comments