A048834 Decimal expansion of Sum_{n >= 2} (K(n)/n!), where K(n) is A002034.
1, 7, 1, 4, 0, 0, 6, 2, 9, 3, 5, 9, 1, 6, 1, 6, 0, 2, 2, 7, 2, 7, 7, 4, 3, 8, 4, 5, 4, 1, 9, 0, 3, 3, 7, 5, 4, 8, 3, 1, 5, 9, 7, 9, 2, 1, 7, 1, 8, 9, 5, 7, 4, 0, 9, 0, 0, 1, 2, 1, 4, 6, 5, 7, 3, 9, 5, 2, 1, 0, 8, 9, 9, 3, 8, 8, 2, 9, 1, 7, 6, 6, 5, 4, 5, 6, 7, 8, 5, 1, 2, 8, 9, 8, 0, 8, 9, 0, 6, 0, 5, 8, 7
Offset: 1
Examples
1.71400629359161602272774384541903375483159792171895...
Links
- Charles Ashbacher, Smarandache Sequences, Stereograms and Series, Hexis (2005).
- Ion Cojocaru and Sorin Cojocaru, The Second Constant of Smarandache, Smarandache Notions Journal, Vol. 7, No. 1-2-3 (1996), pp. 119-120.
- Eric Weisstein's World of Mathematics, Smarandache Constants.
Programs
-
Maple
Digits := 80 ; A002034:=[1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5,7,11,23,4,10,13,9,7,29,5,31,8,11,17,7,6,37,19,13,5,41,7,43,11,6,23,47,6,14,10,17,13,53,9,11,7,19,29,59,5,61,31,7,8,13,11,67,17,23,7,71,6,73,37,10,19,11,13,79,6,9,41,83,7]; sma := 0.0 ; for n from 2 to nops(A002034) do sma := sma + A002034[n]/factorial(n) ; od ; # R. J. Mathar, Apr 13 2006
-
Mathematica
K[n_] := Module[{k = 1}, While[True, If[Divisible[k!, n], Return[k], k++]]]; N[Sum[K[n]/n! , {n, 2, 200}], 103] // RealDigits // First (* Jean-François Alcover, Nov 17 2020 *)
Extensions
More terms from R. J. Mathar, Apr 13 2006
More terms from Jean-François Alcover, Nov 17 2020
Comments