cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A244925 Number T(n,k) of n-node unlabeled rooted trees with every leaf at height k; triangle T(n,k), n>=1, 0<=k<=n-1, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 2, 2, 1, 1, 0, 1, 4, 3, 2, 1, 1, 0, 1, 4, 5, 3, 2, 1, 1, 0, 1, 7, 7, 6, 3, 2, 1, 1, 0, 1, 8, 12, 8, 6, 3, 2, 1, 1, 0, 1, 12, 18, 15, 9, 6, 3, 2, 1, 1, 0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1, 0, 1, 21, 42, 39, 26, 17, 9, 6, 3, 2, 1, 1
Offset: 1

Views

Author

Alois P. Heinz, Jul 08 2014

Keywords

Examples

			The A048816(5) = 5 rooted trees with 5 nodes with every leaf at the same height sorted by height are:
  :    o    :   o     o   :   o   :  o  :
  :  /( )\  :  / \    |   :   |   :  |  :
  : o o o o : o   o   o   :   o   :  o  :
  :         : |   |  /|\  :   |   :  |  :
  :         : o   o o o o :   o   :  o  :
  :         :             :  / \  :  |  :
  :         :             : o   o :  o  :
  :         :             :       :  |  :
  :         :             :       :  o  :
  :         :             :       :     :
  : ---1--- : -----2----- : --3-- : -4- :
Thus row 5 = [0, 1, 2, 1, 1].
Triangle T(n,k) begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  1,  1;
  0, 1,  2,  1,  1;
  0, 1,  2,  2,  1,  1;
  0, 1,  4,  3,  2,  1, 1;
  0, 1,  4,  5,  3,  2, 1, 1;
  0, 1,  7,  7,  6,  3, 2, 1, 1;
  0, 1,  8, 12,  8,  6, 3, 2, 1, 1;
  0, 1, 12, 18, 15,  9, 6, 3, 2, 1, 1;
  0, 1, 14, 27, 23, 16, 9, 6, 3, 2, 1, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007(n-1), A000012 (for n>0), A002865(n-1) (for n>2), A048808, A048809, A048810, A048811, A048812, A048813, A048814, A048815.
T(2n+1,n) gives A074045.
Row sums give A048816.

Programs

  • Maple
    with(numtheory):
    T:= proc(n, k) option remember; `if`(n=1, 1, `if`(k=0, 0,
          add(add(`if`(d
    				
  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 1, 1, If[k == 0, 0, Sum[ Sum[ If[dJean-François Alcover, Jan 28 2015, after Alois P. Heinz *)

A048808 Number of rooted trees with n nodes with every leaf at height 3.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 12, 18, 27, 42, 64, 96, 146, 219, 327, 491, 730, 1084, 1608, 2376, 3500, 5154, 7563, 11076, 16193, 23625, 34395, 50005, 72550, 105089, 151984, 219448, 316362, 455434, 654661, 939736, 1347137, 1928593, 2757449, 3937675
Offset: 4

Views

Author

Christian G. Bower, Apr 15 1999

Keywords

Crossrefs

Column k=3 of A244925.

Programs

  • Mathematica
    T[n_, k_] := T[n, k] = If[n == 1, 1, If[k == 0, 0, Sum[Sum[If[d < k, 0, T[d, k - 1]*d], {d, Divisors[j]}]*T[n - j, k], {j, 1, n - 1}]/(n - 1)]];
    a[n_] := T[n, 3];
    Table[a[n], {n, 4, 50}] (* Jean-François Alcover, May 11 2019, after Alois P. Heinz in A244925 *)

Formula

Euler transform of A002865 (with a(0)=0) shifted right.

A048810 Number of rooted trees with n nodes with every leaf at height 5.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 16, 26, 44, 73, 123, 203, 340, 563, 935, 1550, 2571, 4251, 7034, 11618, 19188, 31654, 52201, 85999, 141631, 233074, 383375, 630215, 1035508, 1700501, 2791309, 4579587, 7510280, 12310980, 20172075, 33039130, 54092556
Offset: 6

Views

Author

Christian G. Bower, Apr 15 1999

Keywords

Crossrefs

Column k=5 of A244925.

Formula

Euler transform of A048809 shifted right.
Showing 1-3 of 3 results.