A048854 Triangle read by rows. A generalization of unsigned Lah numbers, called L[4,1].
1, 2, 1, 12, 12, 1, 120, 180, 30, 1, 1680, 3360, 840, 56, 1, 30240, 75600, 25200, 2520, 90, 1, 665280, 1995840, 831600, 110880, 5940, 132, 1, 17297280, 60540480, 30270240, 5045040, 360360, 12012, 182, 1, 518918400, 2075673600, 1210809600, 242161920, 21621600, 960960, 21840, 240, 1, 17643225600, 79394515200, 52929676800, 12350257920, 1323241920, 73513440, 2227680, 36720, 306, 1
Offset: 0
Examples
The triangle T(n, m) begins: n\m 0 1 2 3 4 5 6 7 8 ... 0: 1 1: 2 1 2: 12 12 1 3: 120 180 30 1 4: 1680 3360 840 56 1 5: 30240 75600 25200 2520 90 1 6: 665280 1995840 831600 110880 5940 132 1 7: 17297280 60540480 30270240 5045040 360360 12012 182 1 8: 518918400 2075673600 1210809600 242161920 21621600 960960 21840 240 1 ... n = 9: 17643225600 79394515200 52929676800 12350257920 1323241920 73513440 2227680 36720 306 1, n = 10: 670442572800 3352212864000 2514159648000 670442572800 83805321600 5587021440 211629600 4651200 58140 380 1. ... Recurrence from a-sequence: T(4, 2) = 2*T(3, 1) + 4*4*T(3, 2) = 2*180 + 16*30 = 840. Recurrence from z-sequence: T(4, 0) = 4*(z(0)*T(3, 0) + z(1)*T(3, 1) + z(2)*T(3, 2)+ z(3)*T(3, 3)) = 4*(2*120 + 2*180 - 8*30 + 60*1) = 1680. Four term recurrence: T(4, 2) = T(3, 1) + 2*13*T(3, 2) - 8*3*5*T(2, 2) = 180 + 26*30 - 120*1 = 840. Meixner type identity for n = 2: (D_x - 4*(D_x)^2)*(12 + 12*x + 1*x^2) = (12 + 2*x) - 4*2 = 2*(2 + x). Sheffer recurrence for R(3, x): [(2 + x) + 8*(1 + x)*D_x + 16*x*(D_x)^2] (12 + 12*x + 1*x^2) = (2 + x)*(12 + 12*x + x^2) + 8*(1 + x)*(12 + 2*x) + 16*2*x = 120 + 180*x + 30*x^2 + x^3 = R(3, x). Boas-Buck recurrence for column m = 2 with n = 4: T(4, 2) = (4!*10/2)*(1*30/3! + 4*1/2!) = 840. Diagonal sequence d = 2: {12, 180, 840 ...} has o.g.f. 12*(1 + 10*x + 5*x^2)/(1 - x)^5 (see A001813(2) and row n=2 of A091042) generating {12*binomial(2*(n + 2), 4)}_{n >= 0}. - _Wolfdieter Lang_, Oct 12 2017
References
- S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened)
- Orli Herscovici, Ross G. Pinsky, An identity involving stirling numbers of both kinds and its connection to right-to-left minima of certain set partitions, (2019).
- Wolfdieter Lang, On Sums of Powers of Arithmetic Progressions, and Generalized Stirling, Eulerian and Bernoulli Numbers, arXiv:math/1707.04451 [math.NT], July 2017, section C) 4.
- Wolfdieter Lang, On Generating functions of Diagonal Sequences of Sheffer and Riordan Number Triangles, arXiv:1708.01421 [math.NT], August 2017.
- Emanuele Munarini, Combinatorial identities involving the central coefficients of a Sheffer matrix, Applicable Analysis and Discrete Mathematics (2019) Vol. 13, 495-517.
Crossrefs
Programs
-
Maple
A290604_row := proc(n) exp(x*t/(1-4*t))/sqrt(1-4*t): series(%, t, n+2): seq(n!*coeff(coeff(%,t,n),x,j), j=0..n) end: seq(A290604_row(n), n=0..9); # Peter Luschny, Sep 23 2017
-
Mathematica
T[n_, m_] := n!/m! * Binomial[2*n, n] * Binomial[n, m] / Binomial[2*m, m]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jul 05 2013 *) T[0, 0] = 1; T[-1, ] = T[, -1] = 0; T[n_, m_] /; n < m = 0; T[n_, m_] := T[n, m] = T[n-1, m-1] + 2*(4*n-3)*T[n-1, m] - 8*(n-1)*(2*n-3)*T[n-2, m]; Table[T[n, m], {n, 0, 9}, {m, 0, n}] // Flatten (* Jean-François Alcover, Sep 23 2017 *)
Formula
T(n, m) = (n!/m!)*A046521(n, m) = (n!/m!)* binomial(2*n, n)*binomial(n, m)/binomial(2*m, m), n >= m >= 0, a(n, m) := 0, n < m.
Sum_{n>=0, k>=0} T(n, k)*x^n*y^k/(2*n)! = exp(x)*cosh(sqrt(x*y)). - Vladeta Jovovic, Feb 21 2003
E.g.f. of row polynomials R(n, x) := Sum_{m=0..n} T(n, m)*x^m:
(1 - 4*t)^(-1/2)*exp(x*t/(1 - 4*t)) (this is the e.g.f. for the triangle).
E.g.f. of column m: (1 - 4*t)^(-1/2)*(t/(1 - 4*t))^m/m!, m >= 0.
Three term recurrence for column entries m >= 1: T(n, m) = (n/m)*T(n-1, m-1) + 4*n*T(n-1, m) with T(n, m) = 0 for n < m, and for the column m = 0: T(n, 0) = n*Sum_{j=0..n-1} z(j)*T(n-1, j), n >= 1, T(0, 0) = 0, from the a-sequence {1, 4 repeat(0)} and the z(j) = 2*A292220(j) (see above).
Four term recurrence: T(n, m) = T(n-1, m-1) + 2*(4*n - 3)*T(n-1, m) - 8*(n-1)*(2*n - 3)*T(n-2, m), n >= m >= 0, with T(0, 0) =1, T(-1, m) = 0, T(n, -1) = 0 and T(n, m) = 0 if n < m.
Meixner type identity for (monic) row polynomials: (D_x/(1 + 4*D_x)) * R(n, x) = n * R(n-1, x), n >= 1, with R(0, x) = 1 and D_x = d/dx. That is, Sum_{k=0..n-1} (-4)^k*(D_x)^(k+1)*R(n, x) = n*R(n-1, x), n >= 1.
General recurrence for Sheffer row polynomials (see the Roman reference, p. 50, Corollary 3.7.2, rewritten for the present Sheffer notation):
R(n, x) = [(2 + x)*1 + 8*(1 + x)*D_x + 16*x*(D_x)^2]*R(n-1, x), n >= 1, with R(0, x) = 1.
Boas-Buck recurrence for column m (see a comment in A286724 with references): T(n, m) = (n!/(n-m))*(2 + 4*m)*Sum_{p=0..n-1-m} 4^p*T(n-1-p, m)/(n-1-p)!, for n > m >= 0, with input T(m, m) = 1.
Explicit form (from the o.g.f.s of diagonal sequences): ((2*(n-m))!/(n-m)!)*binomial(2*n,2*(n-m)), n >= m >= 0, and vanishing for n < m. - Wolfdieter Lang, Oct 12 2017
Extensions
Name changed, after merging my newer duplicate, from Wolfdieter Lang, Oct 10 2017
Comments