A048868 Numbers whose reduced residue system contains more primes than nonprimes.
8, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 84, 88, 90, 96, 98, 100, 102, 104, 108, 110, 112, 114, 120, 126, 130, 132, 138, 140, 144, 150, 154, 156, 160, 162, 168, 170
Offset: 1
Keywords
Examples
n=30 is the largest extremal example whose reduced residue system consists only of primes and 1 (see A048597); n=8 Phi(8)=4, reduced residue system (8)={1,3,5,7} n=32 Phi(32)=16, reduced residue system (32)={1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31} of which only {1,9,15,21,25,27} are not primes, 10 are primes: 10 > 6 thus 32 belongs here.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..586 (a(n) < 10^5, no more terms < 10^8 checked by David A. Corneth).
- Michael De Vlieger, Values of a(n), their differences, and multiplicity notation of their differences.
- Wikipedia, Reduced residue system.
Programs
-
Mathematica
Select[Range@ 170, Function[n, Count[Range@ n, ?(PrimeQ@ # && CoprimeQ[n, #] &)] > EulerPhi[n]/2]] (* _Michael De Vlieger, May 21 2017 *)
-
PARI
is(n) = {my(f = factor(n), e = eulerphi(f), o = omega(f), pr = primepi(n) - o, c = e - pr); c < pr } \\ David A. Corneth, Jun 09 2024
-
PARI
upto(n) = { my(res = List(), qp = 0, t = 0); forfactored(i = 1, n, if(isprime(i[1]), qp++; ); e = eulerphi(i[2]); o = omega(i[2]); if(e < (qp - o)<<1, t++; listput(res, i[1]); ); ); res } \\ David A. Corneth, Jun 09 2024
Comments