A048871 Length of hypotenuse squared in right triangle formed by a palindromic spiral plotted in Cartesian coordinates.
2, 5, 13, 25, 41, 61, 85, 113, 145, 202, 605, 1573, 3025, 4961, 7381, 10285, 13673, 17545, 20002, 22522, 26962, 31802, 37042, 42682, 48722, 55162, 62002, 69242, 77285, 85748, 94228, 103108, 112388, 122068, 132148, 142628, 153508, 164788
Offset: 1
Examples
To begin palindromic spiral, plot (1, 0), (0, 1). Hypotenuse is c^2=a^2+b^2, or 2=1+1. a(1) = 2. a(2)=5 because c^2=a^2+b^2 and 5=1+4.
References
- H. E. Huntley, The Divine Proportion, A Study in Mathematical Beauty. New York: Dover, 1970. See Chapter 13, Spira Mirabilis, especially Fig. 13-5, page 173.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Patrick De Geest, World!Of Numbers
Programs
-
Mathematica
Join[{2},Total[#^2]&/@Partition[Select[Range[300],PalindromeQ],2,1]] (* Harvey P. Dale, Mar 18 2024 *)