A048962 Table in which n-th row lists digits in periodic part of decimal expansion of 1/n.
0, 0, 3, 0, 0, 6, 1, 4, 2, 8, 5, 7, 0, 1, 0, 0, 9, 3, 0, 7, 6, 9, 2, 3, 7, 1, 4, 2, 8, 5, 6, 0, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 5, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 0, 4, 7, 6, 1, 9, 4, 5, 0, 4, 3, 4, 7, 8, 2, 6, 0, 8, 6, 9, 5, 6, 5, 2, 1, 7, 3, 9, 1, 3
Offset: 1
Examples
1/1=1. -> 0; 1/2=.5 ->0; 1/3=.3333... -> 3; 1/4=.25 -> 0; 1/5=.2 ->0; 1/6=.1666... -> 6; 1/7=.142857... -> 1 4 2 8 5 7; etc. Triangle begins: 0; 0; 3; 0; 0; 6; 1,4,2,8,5,7; 0; 1; 0; 0,9; 3; 0,7,6,9,2,3; 7,1,4,2,8,5; 6; 0; ...
References
- Conway and Guy, The Book of Numbers, p. 160
Links
Programs
-
Mathematica
nmax = 50; row[n_] := Switch[FactorInteger[n], {{2, }} | {{5, }} | {{2, }, {5, }}, {0}, _, rd = RealDigits[N[1 + 1/n, 10 nmax]]; FindTransientRepeat[rd[[1]] // Rest, 2][[2]]]; row /@ Range[nmax] // Flatten (* Jean-François Alcover, Dec 04 2019 *)
Comments