cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A048962 Table in which n-th row lists digits in periodic part of decimal expansion of 1/n.

Original entry on oeis.org

0, 0, 3, 0, 0, 6, 1, 4, 2, 8, 5, 7, 0, 1, 0, 0, 9, 3, 0, 7, 6, 9, 2, 3, 7, 1, 4, 2, 8, 5, 6, 0, 0, 5, 8, 8, 2, 3, 5, 2, 9, 4, 1, 1, 7, 6, 4, 7, 5, 0, 5, 2, 6, 3, 1, 5, 7, 8, 9, 4, 7, 3, 6, 8, 4, 2, 1, 0, 0, 4, 7, 6, 1, 9, 4, 5, 0, 4, 3, 4, 7, 8, 2, 6, 0, 8, 6, 9, 5, 6, 5, 2, 1, 7, 3, 9, 1, 3
Offset: 1

Views

Author

Keywords

Comments

The length of row n is A007732(n). - T. D. Noe, May 14 2008
The convention is that the earliest period is displayed. - T. D. Noe, May 14 2008

Examples

			1/1=1. -> 0; 1/2=.5 ->0; 1/3=.3333... -> 3; 1/4=.25 -> 0; 1/5=.2 ->0; 1/6=.1666... -> 6; 1/7=.142857... -> 1 4 2 8 5 7; etc.
Triangle begins:
  0;
  0;
  3;
  0;
  0;
  6;
  1,4,2,8,5,7;
  0;
  1;
  0;
  0,9;
  3;
  0,7,6,9,2,3;
  7,1,4,2,8,5;
  6;
  0;
  ...
		

References

  • Conway and Guy, The Book of Numbers, p. 160

Crossrefs

Programs

  • Mathematica
    nmax = 50;
    row[n_] := Switch[FactorInteger[n], {{2, }} | {{5, }} | {{2, }, {5, }}, {0}, _, rd = RealDigits[N[1 + 1/n, 10 nmax]]; FindTransientRepeat[rd[[1]] // Rest, 2][[2]]];
    row /@ Range[nmax] // Flatten (* Jean-François Alcover, Dec 04 2019 *)

A244661 Beastly reciprocals, or numbers n such that digitsum(1/n) = 666.

Original entry on oeis.org

149, 298, 596, 646, 745, 1192, 1490, 1615, 2119, 2584, 2980, 3109, 3725, 3878, 5960, 6218, 6357, 6460, 7106, 7294, 7450, 8476, 9262, 9868, 10941, 11627, 11634, 11920, 12436, 14535, 14900, 15049, 15545, 16150, 18625, 21190, 22718, 23256, 23902, 24872, 24915
Offset: 1

Views

Author

Anthony Sand, Jul 04 2014

Keywords

Comments

149 is a full reptend prime (see A001913), hence the sum of the decimal digits of 1/149 is 9 * 148 / 2 = 666.
From Robert G. Wilson v, Aug 16 2014: (Start)
If n is present, so is 10n.
If n is present then A003592*n is possibly present.
Primitives are: 149, 646, 1615, 2119, 3109, 3878, 7294, 9262, 9868, 10941, …, .
Palindromes: 646, 1525251, 2062602, …, .
Primes: 149, 3109, 111149, 351391, …, .
(End)

Examples

			If digitsum(1/n) sums the decimal digits of 1/n up to the point at which they recur or terminate, then digitsum(1/149) = 666 = 0 + 0 + 6 + 7 + 1 + 1 + 4 + 0 + 9 + 3 + 9 + 5 + 9 + 7 + 3 + 1 + 5 + 4 + 3 + 6 + 2 + 4 + 1 + 6 + 1 + 0 + 7 + 3 + 8 + 2 + 5 + 5 + 0 + 3 + 3 + 5 + 5 + 7 + 0 + 4 + 6 + 9 + 7 + 9 + 8 + 6 + 5 + 7 + 7 + 1 + 8 + 1 + 2 + 0 + 8 + 0 + 5 + 3 + 6 + 9 + 1 + 2 + 7 + 5 + 1 + 6 + 7 + 7 + 8 + 5 + 2 + 3 + 4 + 8 + 9 + 9 + 3 + 2 + 8 + 8 + 5 + 9 + 0 + 6 + 0 + 4 + 0 + 2 + 6 + 8 + 4 + 5 + 6 + 3 + 7 + 5 + 8 + 3 + 8 + 9 + 2 + 6 + 1 + 7 + 4 + 4 + 9 + 6 + 6 + 4 + 4 + 2 + 9 + 5 + 3 + 0 + 2 + 0 + 1 + 3 + 4 + 2 + 2 + 8 + 1 + 8 + 7 + 9 + 1 + 9 + 4 + 6 + 3 + 0 + 8 + 7 + 2 + 4 + 8 + 3 + 2 + 2 + 1 + 4 + 7 + 6 + 5 + 1.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Total[ RealDigits[ 1/n, 10][[1, 1]]] == 666;  Select[ Range@ 25000, fQ ] (* Robert G. Wilson v, Aug 16 2014 *)

A244592 Numbers n such that n equals the partial or complete sum of the decimal digits of 1/n, up to the point at which the digits recur or terminate.

Original entry on oeis.org

3, 7, 8, 13, 14, 34, 43, 49, 51, 76, 83, 92, 94, 98, 103, 109, 113, 127, 139, 141, 169, 177, 179, 181, 194, 218, 229, 283, 323, 338, 367, 394, 397, 401, 437, 524, 526, 537, 579, 587, 626, 659, 661, 673, 674, 687, 701, 719, 724, 743, 767, 769, 802, 823, 838
Offset: 1

Views

Author

Anthony Sand, Jul 01 2014

Keywords

Comments

The digits summed are those before the decimal expansion recurs or terminates. Otherwise reciprocals that supply a recurrent 1, like 1/9 = 0.111... or 1/99 = 0.010101..., would always produce a sum equal to n from sufficient terms of the reciprocal.

Examples

			1/3 = 0.3... and 3 = 0 + 3.
1/7 = 0.142857... and 7 = 1 + 4 + 2.
1/8 = 0.125 and 8 = 1 + 2 + 5.
1/13 = 0.0769230... and 13 = 7 + 6.
1/14 = 0.0714285... and 14 = 7 + 1 + 4 + 2.
1/34 = 0.02941176470588235... and 34 = 2 + 9 + 4 + 1 + 1 + 7 + 6 + 4.
		

Crossrefs

Cf. A048997.
Showing 1-3 of 3 results.