cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049114 2-ranks of difference sets constructed from Glynn type II hyperovals.

Original entry on oeis.org

1, 1, 5, 7, 21, 37, 89, 173, 383, 777, 1665, 3441, 7277, 15159, 31885, 66645, 139865, 292757, 613823, 1285585, 2694433, 5644609, 11828501, 24782311, 51928773, 108802597, 227978105, 477674813, 1000877759, 2097121497, 4394101857
Offset: 1

Views

Author

Christian Krattenthaler (kratt(AT)ap.univie.ac.at)

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,5,7,21];; for n in [5..40] do a[n]:=a[n-1]+3*a[n-2]-a[n-3] -a[n-4] +1; od; Concatenation([1], a); # G. C. Greubel, Jul 10 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5) )); // G. C. Greubel, Jul 10 2019
    
  • Maple
    L := 1,1,5,7: for i from 5 to 100 do l := nops([ L ]): L := L,op(l,[ L ])+3*op(l-1,[ L ])-op(l-2,[ L ])-op(l-3,[ L ])+1: od: [ L ];
  • Mathematica
    Join[{1,1,5,7}, Table[a[1]=1; a[2]=1; a[3]=5; a[4]=7; a[i]=a[i-1]+ 3*a[i-2]-a[i-3]-a[i-4] +1, {i, 5, 40}]]
    CoefficientList[Series[(1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5), {x, 0, 40}], x] (* G. C. Greubel, Jul 10 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)) \\ G. C. Greubel, Jul 10 2019
    
  • Sage
    ((1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Jul 10 2019
    

Formula

G.f.: (1-x+x^2-x^3+x^4)/(1-2*x-2*x^2+4*x^3-x^5).
a(n+1) = a(n) + 3*a(n-1) - a(n-2) - a(n-3) + 1.