cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049115 a(n) is the number of iterations of the Euler phi function needed to reach a power of 2, when starting from n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 1, 0, 1, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 0, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 4, 1, 3, 2, 1, 2, 3, 3, 2, 2, 3, 3, 4, 1, 2, 2, 3, 0, 2, 2, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3, 1, 4, 2, 3, 2, 1, 3, 3, 2, 3, 2, 3, 3, 2, 4, 3, 1, 2, 3, 2, 2, 3, 1, 2, 2, 2
Offset: 1

Views

Author

Keywords

Comments

a(n) = A227944(n) if n is not a power of 2. - Eric M. Schmidt, Oct 13 2013

Examples

			If n is a power of 2, then a(n)=0 by definition. If n = 59049, then by iterating with phi, we get 59049 -> 39366 -> 13122 -> 4374 -> 1458 -> 486 -> 162 -> 54 -> 18 -> 6 -> 2 -> 1. It took ten steps to reach the first power of 2 (2 in this case), so a(59049) = 10.
		

Crossrefs

Programs

  • Mathematica
    Table[If[IntegerQ@ Log2@ n, 0, -1 + Length@ NestWhileList[EulerPhi, n, ! IntegerQ@ Log2@ # &]], {n, 105}] (* Michael De Vlieger, Aug 01 2017 *)
  • PARI
    A049115(n) = if(!bitand(n,n-1),0,1+A049115(eulerphi(n))); \\ Antti Karttunen, Aug 28 2021

Formula

The smallest x so that Nest[ EulerPhi, n, x ] = 2^w is just achieved.
From Antti Karttunen, Aug 28 2021: (Start)
If A209229(n) = 1, then a(n) = 0, otherwise a(n) = 1 + a(A000010(n)).
a(n) <= A003434(n) and a(n) <= A329697(n) for all n.
(End)

Extensions

Definition corrected and simplified, example corrected by Antti Karttunen, Aug 28 2021