A049115 a(n) is the number of iterations of the Euler phi function needed to reach a power of 2, when starting from n.
0, 0, 1, 0, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 1, 0, 1, 2, 3, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 1, 2, 0, 2, 1, 2, 2, 3, 3, 2, 1, 2, 2, 3, 2, 2, 3, 4, 1, 3, 2, 1, 2, 3, 3, 2, 2, 3, 3, 4, 1, 2, 2, 3, 0, 2, 2, 3, 1, 3, 2, 3, 2, 3, 3, 2, 3, 2, 2, 3, 1, 4, 2, 3, 2, 1, 3, 3, 2, 3, 2, 3, 3, 2, 4, 3, 1, 2, 3, 2, 2, 3, 1, 2, 2, 2
Offset: 1
Keywords
Examples
If n is a power of 2, then a(n)=0 by definition. If n = 59049, then by iterating with phi, we get 59049 -> 39366 -> 13122 -> 4374 -> 1458 -> 486 -> 162 -> 54 -> 18 -> 6 -> 2 -> 1. It took ten steps to reach the first power of 2 (2 in this case), so a(59049) = 10.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[If[IntegerQ@ Log2@ n, 0, -1 + Length@ NestWhileList[EulerPhi, n, ! IntegerQ@ Log2@ # &]], {n, 105}] (* Michael De Vlieger, Aug 01 2017 *)
-
PARI
A049115(n) = if(!bitand(n,n-1),0,1+A049115(eulerphi(n))); \\ Antti Karttunen, Aug 28 2021
Formula
The smallest x so that Nest[ EulerPhi, n, x ] = 2^w is just achieved.
From Antti Karttunen, Aug 28 2021: (Start)
(End)
Extensions
Definition corrected and simplified, example corrected by Antti Karttunen, Aug 28 2021
Comments