cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049130 Revert transform of ((x - 1)(x + 1))/(-1 - x + x^3).

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 73, 211, 630, 1918, 5944, 18668, 59311, 190243, 615269, 2004025, 6568174, 21645438, 71681152, 238416580, 796107464, 2667768904, 8968626418, 30240087086, 102238147891, 346514952331, 1177137322768, 4007326361986, 13669068510355, 46711170248183, 159899495303170
Offset: 1

Views

Author

Keywords

Comments

Binomial transform of aerated version of A001764. - Paul Barry, Nov 05 2006
a(n) is the number of planar rooted trees with n vertices, where each vertex has one or an even number of children. - Kurusch Ebrahimi-Fard and Dominique Manchon (kef(AT)unizar.es), Jun 05 2010

Programs

  • Maple
    series(RootOf((x-1)*A^3+(1-x)*A-x,A),x=0,30); # Mark van Hoeij, Apr 16 2013
  • Mathematica
    Table[Sum[Binomial[n,2*k]*Binomial[3*k,k]/(2*k+1),{k,0,Floor[n/2]}],{n,0,20}] (* Vaclav Kotesovec, Jun 28 2013 *)
  • PARI
    Vec( serreverse(x*(1-x)*(1+x)/(1+x-x^3) +O(x^66) ) ) \\ Joerg Arndt, Sep 12 2013

Formula

a(n) = sum{k=0..floor(n/2), C(n,2k)*C(3k,k)/(2k+1)}; a(n)=sum{k=0..n, C(3k/2,k/2)(1+(-1)^k)/(2(k+1))}. - Paul Barry, Nov 05 2006
G.f.: A(x) satisfies (x-1)*A(x)^3+(1-x)*A(x)-x = 0. - Mark van Hoeij, Apr 16 2013
Representation in terms of special values of hypergeometric function of type 4F3, in Maple notation a(n) = hypergeom([-n/2, (1-n)/2, 1/3, 2/3], [1, 1/2, 3/2], 27/4), n=0,1,2... . - Karol A. Penson, Jun 20 2013
Recurrence (for offset 0): -23*(n-3)*(n-2)*a(n-4) + 19*(n-2)*(2*n-3)*a(n-3) - 3*(n-2)*n*a(n-2) - 8*n*(2*n-1)*a(n-1) + 4*n*(n+1)*a(n) = 0. - Vaclav Kotesovec, Jun 28 2013
Asymptotics (for offset 0): a(n) ~ sqrt(3/Pi)*sqrt(1/2+1/(3*sqrt(3)))^3 * (1+3/2*sqrt(3))^n/n^(3/2). - Vaclav Kotesovec, Jun 28 2013
G.f.: 1/(1-x - 3*x^2/(S(0)*(1-x))), where S(k) = 4*k+3 - 3*x^2*(3*k+4)*(6*k+5)/( 2*(1-x)^2*(4*k+5) - 3*x^2*(3*k+5)*(6*k+7)/S(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2013