cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049194 Number of digits in n-th term of A001387.

Original entry on oeis.org

1, 2, 3, 6, 8, 12, 18, 27, 39, 58, 85, 125, 183, 269, 394, 578, 847, 1242, 1820, 2668, 3910, 5731, 8399, 12310, 18041, 26441, 38751, 56793, 83234, 121986, 178779, 262014, 384000, 562780, 824794, 1208795, 1771575, 2596370, 3805165, 5576741
Offset: 1

Views

Author

Keywords

References

  • Peter A. Hendriks, "A binary variant of Conway's audioactive sequence", lecture at 1192nd meeting of WWWW, Groningen, The Netherlands (Jul 15 1999).

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1+x+x^3-x^4-x^5)/(1-x-x^2+x^5),{x,0,50}],x] (* Peter J. C. Moses, Jun 21 2013 *)
  • PARI
    a(n) = if (n==3, 3, if (n==4, 6, floor((8/9 + (1/18)*(748 - 36*sqrt(93))^(1/3) + (1/18)*(748 + 36*sqrt(93))^(1/3)) * (1/3 + (1/6)*(116 - 12*sqrt(93))^(1/3) + (1/6)*(116 + 12*sqrt(93))^(1/3))^(n-1)))) \\ Michel Marcus, Mar 04 2013
    
  • PARI
    a(n) = my(v=vector(n), u=[1,2,3,6]); if(n<=4, u[n], for(i=1, 4, v[i]=u[i]); for(i=5, n, v[i]=v[i-1]+v[i-3]+!(i%2)); v[n]) \\ Jianing Song, Apr 28 2019

Formula

a(n) = (8/9 + (1/18)*(748 - 36*sqrt(93))^(1/3) + (1/18)*(748 + 36*sqrt(93))^(1/3)) * (1/3 + (1/6)*(116 - 12*sqrt(93))^(1/3) + (1/6)*(116 + 12*sqrt(93))^(1/3))^(n-1).
The number of digits is equal to c*l^n rounded down to the nearest integer, where c and l are the real roots of 3x^3 - 8x^2 + 5x - 1 and x^3 - x^2 - 1 respectively, for all n except n = 2 and n = 3.
From Jianing Song, Apr 28 2019: (Start)
a(n) = a(n-1) + a(n-2) - a(n-5) for n >= 7. [Derived from the T. Sillke link above.]
a(n) = a(n-1) + a(n-3) if n is odd, a(n-1) + a(n-3) + 1 if n is even, n >= 5 (this does not hold for n = 4).
Limit_{n->oo} a(n)/A001609(n) = c, where c = 1.276742... is the unique real root of 3x^3 - 4x^2 + x - 1. (End)

Extensions

More terms and formulas supplied by Gerton Lunter (gerton(AT)math.rug.nl)