A049223 A convolution triangle of numbers obtained from A025750.
1, 10, 1, 150, 20, 1, 2625, 400, 30, 1, 49875, 8250, 750, 40, 1, 997500, 174750, 17875, 1200, 50, 1, 20662500, 3780000, 419625, 32500, 1750, 60, 1, 439078125, 83128125, 9810000, 839500, 53125, 2400, 70, 1, 9513359375, 1852500000, 229359375
Offset: 1
Links
- W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
Programs
-
Maxima
T(n,m):=(m*sum((-1)^(n-m-3*k)*binomial(n+k-1,n-1)*sum(2^j*binomial(k,j)*sum(binomial(j,i-j)*binomial(k-j,n-m-3*(k-j)-i)*5^(3*(k-j)+i),i,j,n-m-k+j),j,0,k),k,0,n-m))/n; /* Vladimir Kruchinin, Dec 10 2011 */
Formula
a(n, m) = 5*(5*(n-1)-m)*a(n-1, m)/n + m*a(n-1, m-1)/n, n >= m >= 1; a(n, m) := 0, n
T(n,m) = (m*sum(k=0..n-m, (-1)^(n-m-3*k)*binomial(n+k-1,n-1)*sum(j=0..k, 2^j*binomial(k,j)*sum(i=j..n-m-k+j, binomial(j,i-j)*binomial(k-j,n-m-3*(k-j)-i)*5^(3*(k-j)+i)))))/n. - Vladimir Kruchinin, Dec 10 2011
Comments