cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049331 Denominator of (1/Pi)*Integral_{0..oo} (sin x / x)^n dx.

Original entry on oeis.org

2, 2, 8, 3, 384, 40, 23040, 630, 1146880, 72576, 1857945600, 3326400, 108999475200, 148262400, 2645053931520, 13621608000, 457065319366656000, 75277762560, 33566877054287216640, 243290200817664
Offset: 1

Views

Author

N. J. A. Sloane, Mark S. Riggs (msr1(AT)ra.msstate.edu), Dec 11 1999

Keywords

Examples

			1/2, 1/2, 3/8, 1/3, 115/384, 11/40, ...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.3, p. 22.

Crossrefs

Cf. 2*A002298 (except for n=4 term), A049330.

Programs

  • Magma
    [Denominator( (1/(2^n*Factorial(n-1)))*(&+[(-1)^j*Binomial(n,j)*(n-2*j)^(n-1): j in [0..Floor(n/2)]]) ): n in [1..25]]; // G. C. Greubel, Apr 01 2022
    
  • Mathematica
    Table[ 1/Pi*Integrate[Sinc[x]^n, {x, 0, Infinity}] // Denominator, {n, 1, 20}] (* Jean-François Alcover, Dec 02 2013 *)
    Denominator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^n), {n, 1, 30}] (* Vladimir Reshetnikov, Sep 02 2016 *)
  • Sage
    [denominator( (1/(2^n*factorial(n-1)))*sum((-1)^j*binomial(n,j)*(n-2*j)^(n-1) for j in (0..(n//2))) ) for n in (1..25)] # G. C. Greubel, Apr 01 2022

Formula

a(n) = denominator( n*A099765(n)/(2^n*(n-1)!) ). - G. C. Greubel, Apr 01 2022