A049400 Partial sums of rows of A047884. Young Tableaux by height.
1, 1, 2, 1, 3, 4, 1, 6, 9, 10, 1, 10, 21, 25, 26, 1, 20, 51, 70, 75, 76, 1, 35, 127, 196, 225, 231, 232, 1, 70, 323, 588, 715, 756, 763, 764, 1, 126, 835, 1764, 2347, 2556, 2611, 2619, 2620, 1, 252, 2188, 5544, 7990, 9096, 9415, 9486, 9495, 9496, 1, 462, 5798, 17424, 27908, 33231, 35135, 35596
Offset: 1
Examples
1; 1, 2; 1, 3, 4; 1, 6, 9, 10; 1, 10, 21, 25, 26; 1, 20, 51, 70, 75, 76; 1, 35, 127, 196, 225, 231, 232; 1, 70, 323, 588, 715, 756, 763, 764;
Links
- Seiichi Manyama, Rows n = 1..70, flattened (first 44 rows from Alois P. Heinz)
- Index entries for sequences related to Young tableaux.
Programs
-
Maple
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j+ add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n) end: g:= proc(n, i, l) option remember; `if`(n=0, h(l), `if`(i<1, 0, `if`(i=1, h([l[], 1$n]), g(n, i-1, l)+ `if`(i>n, 0, g(n-i, i, [l[], i]))))) end: T:= (n, k)-> g(n, k, []): seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 16 2012
-
Mathematica
Accumulate /@ Table[ Plus @@ NumberOfTableaux /@ Reverse /@ Union[ Sort /@ (Compositions[n - m, m] + 1)], {n, 1, 12}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jan 29 2013, after Mathematica program for A047884 *)