A049460 Generalized Stirling number triangle of first kind.
1, -5, 1, 30, -11, 1, -210, 107, -18, 1, 1680, -1066, 251, -26, 1, -15120, 11274, -3325, 485, -35, 1, 151200, -127860, 44524, -8175, 835, -45, 1, -1663200, 1557660, -617624, 134449, -17360, 1330, -56, 1, 19958400, -20355120, 8969148, -2231012, 342769, -33320, 2002, -68, 1
Offset: 0
Examples
{1}; {-5,1}; {30,-11,1}; {-210,107,-18,1}; ... s(2,x)= 30-11*x+x^2; S1(2,x)= -x+x^2 (Stirling1).
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- D. S. Mitrinovic, M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Pubi. Elektrotehn. Fak. Ser. Mat. Fiz. 77 (1962).
Crossrefs
Programs
-
Haskell
a049460 n k = a049460_tabl !! n !! k a049460_row n = a049460_tabl !! n a049460_tabl = map fst $ iterate (\(row, i) -> (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 5) -- Reinhard Zumkeller, Mar 11 2014
-
Mathematica
a[n_, m_] := Pochhammer[m+1, n-m] SeriesCoefficient[Log[1+x]^m/(1+x)^5, {x, 0, n}]; Table[a[n, m], {n, 0, 8}, {m, 0, n}] // Flatten (* Jean-François Alcover, Oct 29 2019 *)
Formula
a(n, m)= a(n-1, m-1) - (n+4)*a(n-1, m), n >= m >= 0; a(n, m) := 0, n
Triangle (signed) = [ -5, -1, -6, -2, -7, -3, -8, -4, -9, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, ...]; triangle (unsigned) = [5, 1, 6, 2, 7, 3, 8, 4, 9, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
If we define f(n,i,a)=sum(binomial(n,k)*stirling1(n-k,i)*product(-a-j,j=0..k-1),k=0..n-i), then T(n,i) = f(n,i,5), for n=1,2,...;i=0...n. - Milan Janjic, Dec 21 2008
Extensions
Second formula corrected by Philippe Deléham, Nov 10 2008
Comments