A049486 Maximum length of non-crossing path on n X n square lattice.
1, 4, 10, 21, 34, 53, 74, 101, 130, 165, 202, 245, 290, 341, 394, 453, 514, 581, 650, 725, 802, 885, 970, 1061, 1154, 1253, 1354, 1461, 1570, 1685, 1802, 1925, 2050, 2181, 2314, 2453, 2594, 2741, 2890, 3045, 3202
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (2, 0, -2, 1).
Crossrefs
Cf. A049487.
Programs
-
Mathematica
Join[{1,4},LinearRecurrence[{2,0,-2,1},{10,21,34,53},40]] (* Harvey P. Dale, Aug 21 2013 *)
Formula
From Colin Barker, May 02 2013: (Start)
Conjecture: a(n) = (9 + (-1)^n - 8*n + 4*n^2)/2 for n > 2.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) for n > 6.
G.f.: -x*(x^5 - x^4 + 3*x^3 + 2*x^2 + 2*x + 1) / ((x-1)^3*(x+1)). (End)
Extensions
More terms from Hugo van der Sanden, Sep 27 2005
Comments