cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A049495 a(n) and a(n)+4^k are primes at least for k=1,2,3,4,5.

Original entry on oeis.org

7, 37, 163, 9157, 9277, 15667, 53593, 56893, 111577, 135193, 137383, 142543, 305407, 467527, 470647, 476023, 480043, 527377, 607093, 671353, 761377, 817147, 885943, 891643, 904663, 1080073, 1116637, 1140847, 1172803, 1233523
Offset: 1

Views

Author

Keywords

Examples

			7, 7+4=11, 7+16=23, 7+64=71, 7+256=263, 7+1024=1031 are all primes; the smallest such a sextuple is {7,11,23,71,263,1031}.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[10^5], Function[p, AllTrue[Range@ 5, PrimeQ[p + 4^#] &]]] (* Michael De Vlieger, Aug 09 2017 *)
  • PARI
    isok(n) = isprime(n) && isprime(n+4) && isprime(n+16) && isprime(n+64) && isprime(n+256) && isprime(n+1024); \\ Michel Marcus, Dec 22 2013

A049497 a(n) and a(n)+4^k are primes at least for k=1,2,3,4,5,6,7.

Original entry on oeis.org

37, 163, 15667, 142543, 607093, 671353, 1457857, 2694157, 2979043, 4890307, 5772097, 6404773, 9139453, 10669003, 11170933, 11218747, 11905987, 13243063, 15130537, 18116473, 19433863, 21960577, 23524183, 25946083, 32380177, 45600157, 46960747, 51905137
Offset: 1

Views

Author

Keywords

Examples

			37, 37+4=41, 37+16=53, 37+64=101, 37+256=293, 37+1024=1061, 37+4096=4133, 37+16384=16421 are all primes; the smallest such a 8-chain of primes is {37,41,53,101,293,1061,4133,16421}.
		

Crossrefs

Programs

  • Maple
    filter:= n -> andmap(isprime, [n,n+4,n+4^2,n+4^3,n+4^4,n+4^5,n+4^6,n+4^7]):
    select(filter, [seq(i,i=7..10^7,6)]); #Robert Israel, Nov 11 2019
  • PARI
    isok(n) = isprime(n) && isprime(n+4) && isprime(n+16) && isprime(n+64) && isprime(n+256) && isprime(n+1024) && isprime(n+4096) && isprime(n+16384); \\ Michel Marcus, Dec 22 2013

Formula

A023200 INTERSECT A269859. - R. J. Mathar, Mar 26 2024

Extensions

More terms from Michel Marcus, Dec 22 2013
Showing 1-2 of 2 results.