cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049505 a(n) = Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1), number of symmetric plane partitions in n-cube.

Original entry on oeis.org

1, 2, 10, 112, 2772, 151008, 18076916, 4751252480, 2740612658576, 3468301123758080, 9627912669442441500, 58618653300361405440000, 782683432110638830001250000, 22916694891747599820616089600000, 1471328419282772010324439370939640000
Offset: 0

Views

Author

Keywords

Comments

The first printing of the Bressoud book states that the formula Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1) in Eq. (6.8) is the number of totally symmetric plane partitions. This is wrong, although it does produce the current sequence. For the correct formula for the number of totally symmetric plane partitions see A005157.

References

  • D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.8), p. 198.

Crossrefs

Main diagonal of array A102539.
Main diagonal of array in A073165.

Programs

  • Maple
    A049505 := proc(n) local i,j; mul(mul((i+j+n-1)/(i+j-1),j=i..n),i=1..n); end;
  • Mathematica
    a[n_] := Product[ ((2i-2)!*(i+2n-1)!)/((i+n-1)!*(2i+n-2)!), {i, 1, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 22 2012, after PARI *)
  • PARI
    a(n)=prod(i=1,n,prod(j=i,n,(i+j+n-1)/(i+j-1)))

Formula

a(n) = Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1).
a(n) = Product_{i=1..n} (((2*i-2)!*(i+2*n-1)!)/((i+n-1)!*(2*i+n-2)!)). - Jean-François Alcover, Jun 22 2012
a(n) = Product_{i=1..n} (binomial((i-1) + 2*n, n)/binomial(n + 2*(i-1), n)). - Olivier Gérard, Feb 25 2015
a(n) ~ exp(1/24) * 3^(9*n^2/4 + 3*n/4 - 1/24) / (A^(1/2) * n^(1/24) * 2^(3*n^2 + n/2 + 1/8)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
From Peter Bala, Feb 15 2023: (Start)
a(n+1) = m(n)*a(n) where m(n) = ((3*n + 2)!*n!^2)/((2 n)!*(2 n + 1)!^2) * Product_{i = 1..n} n + 2*i for n >= 1.
Conjectures:
1) the supercongruence a(p) == 2^((p+1)/2) (mod p^3) holds for all primes p >= 3 (checked up to p = 1009).
2) the congruence a(p^2) == (-1)^((p^2-1)/8)*a(p)^(p^2-p+1) (mod p^3) holds for all primes p >= 3 (checked up to p = 89).
3) the congruence a(p^3) == a(p^2)^((p^3-p^2+2)/2) (mod p^3) holds for all primes p >= 2. (End)

Extensions

Edited by N. J. A. Sloane, Jun 30 2013; codes and formula checked by N. J. A. Sloane and Olivier Gérard