A049505 a(n) = Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1), number of symmetric plane partitions in n-cube.
1, 2, 10, 112, 2772, 151008, 18076916, 4751252480, 2740612658576, 3468301123758080, 9627912669442441500, 58618653300361405440000, 782683432110638830001250000, 22916694891747599820616089600000, 1471328419282772010324439370939640000
Offset: 0
References
- D. M. Bressoud, Proofs and Confirmations, Camb. Univ. Press, 1999; Eq. (6.8), p. 198.
Links
- T. D. Noe, Table of n, a(n) for n = 0..40
- P. J. Taylor, Counting distinct dimer hex tilings, Preprint, 2015.
- P. J. Taylor, Counting distinct dimer hex tilings, arXiv:1602.06796 [math.CO], 2016.
Programs
-
Maple
A049505 := proc(n) local i,j; mul(mul((i+j+n-1)/(i+j-1),j=i..n),i=1..n); end;
-
Mathematica
a[n_] := Product[ ((2i-2)!*(i+2n-1)!)/((i+n-1)!*(2i+n-2)!), {i, 1, n}]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 22 2012, after PARI *)
-
PARI
a(n)=prod(i=1,n,prod(j=i,n,(i+j+n-1)/(i+j-1)))
Formula
a(n) = Product_{1<=i<=j<=n} (i+j+n-1)/(i+j-1).
a(n) = Product_{i=1..n} (((2*i-2)!*(i+2*n-1)!)/((i+n-1)!*(2*i+n-2)!)). - Jean-François Alcover, Jun 22 2012
a(n) = Product_{i=1..n} (binomial((i-1) + 2*n, n)/binomial(n + 2*(i-1), n)). - Olivier Gérard, Feb 25 2015
a(n) ~ exp(1/24) * 3^(9*n^2/4 + 3*n/4 - 1/24) / (A^(1/2) * n^(1/24) * 2^(3*n^2 + n/2 + 1/8)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Mar 01 2015
From Peter Bala, Feb 15 2023: (Start)
a(n+1) = m(n)*a(n) where m(n) = ((3*n + 2)!*n!^2)/((2 n)!*(2 n + 1)!^2) * Product_{i = 1..n} n + 2*i for n >= 1.
Conjectures:
1) the supercongruence a(p) == 2^((p+1)/2) (mod p^3) holds for all primes p >= 3 (checked up to p = 1009).
2) the congruence a(p^2) == (-1)^((p^2-1)/8)*a(p)^(p^2-p+1) (mod p^3) holds for all primes p >= 3 (checked up to p = 89).
3) the congruence a(p^3) == a(p^2)^((p^3-p^2+2)/2) (mod p^3) holds for all primes p >= 2. (End)
Extensions
Edited by N. J. A. Sloane, Jun 30 2013; codes and formula checked by N. J. A. Sloane and Olivier Gérard
Comments