A049534 Starting index of a string of 6 or more consecutive equal digits in decimal expansion of Pi.
763, 193035, 222300, 244454, 252500, 253210, 255946, 399580, 419998, 452072, 710101, 828500, 963025, 1006928, 1129020, 1264271, 1637081, 1691164, 1699928, 1722777, 1795774, 1985814, 2309219, 2328784, 2376568, 2418534, 2523357
Offset: 1
Links
- David G. Andersen, The Pi-Search Page.
- Index entries for sequences related to the number Pi
Crossrefs
Cf. A049514, A049515, A049516, A049517: starting positions of 2, 3, 4, 5 consecutive equal digits; A049518, A049519, A049520, A049521: exactly 2, 3, 4, 5 consecutive equal digits, A049522, A049523: first occurrence of (at least / exactly) n consecutive equal digits.
Cf. A083600, A083604, A083609, A083613, A083618, A083623, A083628, A083634, A083640, and A083645: starting positions of 6 consecutive '0's, ..., '9's.
Cf. A049517: starting position of 5 or more consecutive equal digits.
Programs
-
Mathematica
p = RealDigits[Pi, 10, 2645268][[1]]; Select[ Range@2645263, p[[ # ]] == p[[ # + 1]] == p[[ # + 2]] == p[[ # + 3]] == p[[ # + 4]] == p[[ # + 5]] &]; (* Robert G. Wilson v, Aug 28 2006 *)
Formula
Union of A083600, A083604, A083609, A083613, A083618, A083623, A083628, A083634, A083640, and A083645, plus one (because of indexing convention), and consecutive numbers removed in each of the sets. Also, { A049517(n) | A049517(n+1) = A049517(n)+1, but not A049517(n-1) = A049517(n)-1 } = { n+1 | (floor(Pi*10^n) mod 10^6) mod 111111 = 0, but not for n-1 }, where mod is the binary "remainder" operator. - M. F. Hasler, Mar 21 2017
Extensions
Entry revised by N. J. A. Sloane, Aug 26 2006
More terms from Robert G. Wilson v, Aug 28 2006
Comments