A049542 Primes p such that x^10 = 2 has a solution mod p.
2, 7, 17, 23, 47, 73, 79, 89, 97, 103, 113, 127, 137, 151, 167, 193, 199, 223, 233, 239, 241, 257, 263, 313, 337, 353, 359, 367, 383, 409, 431, 433, 439, 449, 457, 463, 479, 487, 503, 569, 577, 593, 599, 607, 617, 641, 647, 673, 719, 727, 743, 769, 809, 823
Offset: 1
Examples
0^10 == 2 (mod 2). 2^10 == 2 (mod 7). 7^10 == 2 (mod 17). 11^10 == 2 (mod 23). 13^10 == 2 (mod 47). 2^10 == 2 (mod 73). 16^10 == 2 (mod 79). 44^10 == 2 (mod 89). 29^10 == 2 (mod 97). - _R. J. Mathar_, Jul 20 2025
Links
Programs
-
Magma
[p: p in PrimesUpTo(1100) | exists(t){x : x in ResidueClassRing(p) | x^10 eq 2}]; // Vincenzo Librandi, Sep 13 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^10- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
-
PARI
/* see A040098 */
Comments