cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049543 Primes p such that x^11 = 2 has a solution mod p.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 29, 31, 37, 41, 43, 47, 53, 59, 61, 71, 73, 79, 83, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293
Offset: 1

Views

Author

Keywords

Examples

			0^11 == 2 (mod 2). 2^11 == 2 (mod 3). 3^11 == 2 (mod 5). 4^11 == 2 (mod 7). 2^11 == 2 (mod 11). 7^11 == 2 (mod 13). 8^11 == 2 (mod 17). 13^11 == 2 (mod 19). 10^11 == 2 (mod 29). - _R. J. Mathar_, Jul 20 2025
		

Crossrefs

Cf. A000040, A059241 (complement: x^11 = 2 has no solutions mod p).

Programs

  • Magma
    [p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^11 eq 2}]; // Vincenzo Librandi, Sep 13 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^11- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
  • PARI
    forprime(p=2, 2000, if([]~!=polrootsmod(x^11+2, p), print1(p, ", "))); print();
    /* Joerg Arndt, Jun 24 2012 */