cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049550 Primes p such that x^18 = 2 has a solution mod p.

Original entry on oeis.org

2, 17, 23, 31, 41, 47, 71, 89, 113, 127, 137, 167, 191, 223, 233, 239, 257, 263, 281, 311, 353, 359, 383, 401, 431, 439, 449, 457, 479, 503, 521, 569, 593, 599, 601, 617, 641, 647, 719, 727, 743, 761, 809, 839, 857, 863, 881, 887, 911, 929, 953, 977, 983
Offset: 1

Views

Author

Keywords

Comments

Coincides with sequence of primes p such that x^54 = 2 has a solution mod p for the first 167 terms (and then diverges).

Examples

			0^18 == 2 (mod 2). 6^18 == 2 (mod 17). 3^18 == 2 (mod 23). 4^18 == 2 (mod 31). 15^18 == 2 (mod 41). 5^18 == 2 (mod 47). 4^18 == 2 (mod 71). 11^18 == 2 (mod 89). - _R. J. Mathar_, Jul 20 2025
		

Crossrefs

Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(1000) | exists(t){x : x in ResidueClassRing(p) | x^18 eq 2}]; // Vincenzo Librandi, Sep 13 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^18- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
  • PARI
    forprime(p=2,2000,if([]~!=polrootsmod(x^18-2,p),print1(p,", ")));print();
    /* Joerg Arndt, Jul 27 2011 */