A049550 Primes p such that x^18 = 2 has a solution mod p.
2, 17, 23, 31, 41, 47, 71, 89, 113, 127, 137, 167, 191, 223, 233, 239, 257, 263, 281, 311, 353, 359, 383, 401, 431, 439, 449, 457, 479, 503, 521, 569, 593, 599, 601, 617, 641, 647, 719, 727, 743, 761, 809, 839, 857, 863, 881, 887, 911, 929, 953, 977, 983
Offset: 1
Examples
0^18 == 2 (mod 2). 6^18 == 2 (mod 17). 3^18 == 2 (mod 23). 4^18 == 2 (mod 31). 15^18 == 2 (mod 41). 5^18 == 2 (mod 47). 4^18 == 2 (mod 71). 11^18 == 2 (mod 89). - _R. J. Mathar_, Jul 20 2025
Links
Crossrefs
Cf. A000040.
Programs
-
Magma
[p: p in PrimesUpTo(1000) | exists(t){x : x in ResidueClassRing(p) | x^18 eq 2}]; // Vincenzo Librandi, Sep 13 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^18- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* Vincenzo Librandi, Sep 13 2012 *)
-
PARI
forprime(p=2,2000,if([]~!=polrootsmod(x^18-2,p),print1(p,", ")));print(); /* Joerg Arndt, Jul 27 2011 */
Comments