A049557 Primes p such that x^25 = 2 has a solution mod p.
2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 83, 89, 97, 103, 107, 109, 113, 127, 137, 139, 149, 157, 163, 167, 173, 179, 193, 197, 199, 223, 227, 229, 233, 239, 241, 257, 263, 269, 277, 283, 293, 307, 313, 317, 337, 347, 349, 353, 359, 367
Offset: 1
Examples
0^25 == 2 (mod 2). 2^25 == 2 (mod 3). 2^25 == 2 (mod 5). 2^25 == 2 (mod 7). 2^25 == 2 (mod 13). 2^25 == 2 (mod 17). 3^25 == 2 (mod 19). 16^25 == 2 (mod 23). 19^25 == 2 (mod 29). 15^25 == 2 (mod 37). - _R. J. Mathar_, Jul 20 2025
Links
Programs
-
Magma
[p: p in PrimesUpTo(400) | exists(t){x : x in ResidueClassRing(p) | x^25 eq 2}]; // Vincenzo Librandi, Sep 14 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^25 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[100]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
Comments