A049568 Primes p such that x^36 = 2 has a solution mod p.
2, 23, 31, 47, 71, 89, 113, 127, 167, 191, 223, 233, 239, 257, 263, 281, 311, 353, 359, 383, 431, 439, 479, 503, 593, 599, 601, 617, 647, 719, 727, 743, 839, 863, 881, 887, 911, 983, 1031, 1049, 1097, 1103, 1151, 1193, 1217, 1223, 1289, 1319, 1327, 1367
Offset: 1
Examples
^36 == 2 (mod 2). 7^36 == 2 (mod 23). 2^36 == 2 (mod 31). 18^36 == 2 (mod 47). 2^36 == 2 (mod 71). 10^36 == 2 (mod 89). 33^36 == 2 (mod 113). 2^36 == 2 (mod 127). 40^36 == 2 (mod 167). - _R. J. Mathar_, Jul 20 2025
Links
Crossrefs
Cf. A000040.
Programs
-
Magma
[p: p in PrimesUpTo(1500) | exists(t){x : x in ResidueClassRing(p) | x^36 eq 2}]; // Vincenzo Librandi, Sep 14 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^36 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 14 2012 *)