cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049568 Primes p such that x^36 = 2 has a solution mod p.

Original entry on oeis.org

2, 23, 31, 47, 71, 89, 113, 127, 167, 191, 223, 233, 239, 257, 263, 281, 311, 353, 359, 383, 431, 439, 479, 503, 593, 599, 601, 617, 647, 719, 727, 743, 839, 863, 881, 887, 911, 983, 1031, 1049, 1097, 1103, 1151, 1193, 1217, 1223, 1289, 1319, 1327, 1367
Offset: 1

Views

Author

Keywords

Examples

			^36 == 2 (mod 2). 7^36 == 2 (mod 23). 2^36 == 2 (mod 31). 18^36 == 2 (mod 47). 2^36 == 2 (mod 71). 10^36 == 2 (mod 89). 33^36 == 2 (mod 113). 2^36 == 2 (mod 127). 40^36 == 2 (mod 167). - _R. J. Mathar_, Jul 20 2025
		

Crossrefs

Cf. A000040.

Programs

  • Magma
    [p: p in PrimesUpTo(1500) | exists(t){x : x in ResidueClassRing(p) | x^36 eq 2}]; // Vincenzo Librandi, Sep 14 2012
  • Mathematica
    ok[p_]:= Reduce[Mod[x^36 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 14 2012 *)