A049580 Primes p such that x^48 = 2 has a solution mod p.
2, 23, 31, 47, 71, 89, 127, 167, 191, 223, 233, 239, 257, 263, 311, 359, 383, 431, 439, 479, 503, 599, 601, 647, 719, 727, 743, 839, 863, 881, 887, 911, 919, 983, 1031, 1103, 1151, 1223, 1289, 1319, 1327, 1367, 1399, 1423, 1433, 1439, 1471, 1487, 1511, 1559
Offset: 1
Examples
0^48 == 2 (mod 2). 8^48 == 2 (mod 23). 4^48 == 2 (mod 31). 7^48 == 2 (mod 47). 33^48 == 2 (mod 71). 5^48 == 2 (mod 89). 10^48 == 2 (mod 127). 49^48 == 2 (mod 167). 4^48 == 2 (mod 191). - _R. J. Mathar_, Jul 20 2025
Links
Programs
-
Magma
[p: p in PrimesUpTo(1600) | exists(t){x : x in ResidueClassRing(p) | x^48 eq 2}]; // Vincenzo Librandi, Sep 14 2012
-
Mathematica
ok[p_]:= Reduce[Mod[x^48 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[300]], ok] (* Vincenzo Librandi, Sep 14 2012 *)
-
PARI
N=10^4; default(primelimit,N); ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); } forprime(p=2,N, if (ok(p,2,48),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */
Comments