A049595 Primes p such that x^63 = 2 has a solution mod p.
2, 3, 5, 11, 17, 23, 31, 41, 47, 53, 59, 83, 89, 101, 107, 131, 137, 149, 157, 167, 173, 179, 191, 223, 227, 229, 233, 251, 257, 263, 269, 277, 283, 293, 311, 317, 347, 353, 359, 383, 389, 397, 401, 419, 431, 439, 443, 457, 461, 467, 479, 499, 503, 509, 521
Offset: 1
Links
Programs
-
Magma
[p: p in PrimesUpTo(600) | exists(t){x : x in ResidueClassRing(p) | x^63 eq 2}]; // Vincenzo Librandi, Sep 15 2012
-
Maple
select(p -> isprime(p) and nops([msolve(x^63-2,p)])>0, [2,seq(2*i+1,i=1..1000)]); # Robert Israel, Nov 03 2014
-
Mathematica
ok[p_]:= Reduce[Mod[x^63 - 2, p] == 0, x, Integers] =!= False; Select[Prime[Range[150]], ok] (* Vincenzo Librandi, Sep 15 2012 *)
-
PARI
N=10^4; ok(p, r, k)={ return ( (p==r) || (Mod(r,p)^((p-1)/gcd(k,p-1))==1) ); } forprime(p=2,N, if (ok(p,2,63),print1(p,", "))); /* Joerg Arndt, Sep 21 2012 */
-
Python
from itertools import islice from sympy import nextprime, is_nthpow_residue def A049595_gen(startvalue=2): # generator of terms >= startvalue p = max(startvalue-1,1) while (p:=nextprime(p)): if is_nthpow_residue(2,63,p): yield p A049595_list = list(islice(A049595_gen(),20)) # Chai Wah Wu, May 06 2024
Comments