cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049597 Triangular array T(n,k) in which k-th column gives coefficients of sum of Gaussian polynomials [k,m] for m=0..k.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 2, 5, 0, 0, 0, 2, 3, 6, 0, 0, 0, 0, 4, 4, 7, 0, 0, 0, 0, 3, 6, 5, 8, 0, 0, 0, 0, 1, 6, 8, 6, 9, 0, 0, 0, 0, 0, 6, 9, 10, 7, 10, 0, 0, 0, 0, 0, 2, 11, 12, 12, 8, 11, 0, 0, 0, 0, 0, 2, 9, 16, 15, 14, 9, 12, 0, 0, 0, 0, 0, 0, 7, 16, 21, 18, 16, 10, 13, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Keywords

Comments

It appears that T(n-1,k-1) is the number of partitions of n with k objects in the first hook; i.e., with (largest part size) + (number of parts) - 1 = k. If this is correct, we have T(n-1,k-1) = sum_{j<=min(k,n-k-2)} (k-j) * T(k-1,j-1) with T(n-1,n-1) = n. Equivalently, T(n-1,k-1) = T(n-2,k-2) + sum(j<=min(k,n-k-2)} T(k-1,j-1) and thus T(n-1,k-1) = 2*T(n-2,k-2) - T(n-3,k-3) + T(k-1,n-k-3). - Franklin T. Adams-Watters, May 27 2008

Examples

			Table begins:
1
0 2
0 0 3
0 0 1 4
0 0 0 2 5
0 0 0 2 3 6
0 0 0 0 4 4 7
0 0 0 0 3 6 5 8
For k=4 the 5 polynomials have coefficients 1; 1 1 1 1; 1 1 2 1 1; 1 1 1 1; 1; which sum to 5 3 4 3 1, giving column 4.
		

References

  • G. E. Andrews, Theory of Partitions, 1976, pages 240-243

Crossrefs

The nonzero entries of the columns are the rows of A083906.

Programs

  • Maple
    a := n->sort(simplify(sum(product((1-q^i),i=n-r+1..n)/product((1-q^j),j=1..r), r=0..n))):T := proc(n,k) if k=n then n+1 elif k>n then 0 else coeff(a(k),q^(n-k)) fi end:seq(seq(T(n,k),k=0..n),n=0..21);
  • Mathematica
    a [n_] := Sum[Product[1-q^i, {i, n-r+1, n}]/Product[1-q^j, {j, 1, r}], {r, 0, n}] // Simplify; T [n_, k_] := Which[k == n, n+1, k>n, 0, True, Coefficient[a[k], q^(n - k)]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 21}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Maple *)

Formula

The g.f. for the n-th row as polynomial in q, sum(k=0..n, T(n,k)*q^k) is sum(k>=0, x^(k*(k+1))*q^(2*k)/(1-x^(k+1)*q)/prod(j=1..k, 1-x^j*q)^2). For example, the 5th row is the coefficient of x^6 of the g.f., 2*q^4 + 3*q^5 + 6*q^6. - T. Amdeberhan, Jul 31 2012

Extensions

More terms from Emeric Deutsch, Feb 23 2004