cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A083480 Compress the triangular array A049597 by suppressing zero entries and reversing the order of each row.

Original entry on oeis.org

1, 2, 3, 4, 1, 5, 2, 6, 3, 2, 7, 4, 4, 8, 5, 6, 3, 9, 6, 8, 6, 1, 10, 7, 10, 9, 6, 11, 8, 12, 12, 11, 2, 12, 9, 14, 15, 16, 9, 2, 13, 10, 16, 18, 21, 16, 7, 14, 11, 18, 21, 26, 23, 18, 4, 15, 12, 20, 24, 31, 30, 29, 12, 3, 16, 13, 22, 27, 36, 37, 40, 27, 12, 1, 17, 14, 24, 30, 41, 44, 51
Offset: 1

Views

Author

Alford Arnold, Jun 08 2003

Keywords

Comments

Row sums => A000041. Diagonals are sums of Gaussian polynomials (which then sum to powers of two). The number of entries on each row is conjectured to conform to: 0 1 1 1 2 2 3 3 4 5 5 6 7 7 8 9 10 10 11 12 13 13 14 15 16 17 17 ... a sequence which stutters after values 0,1,2,4,6,9,12,16,...A002620.
Regarding the first element of the sequence as T(1,0), it appears that this is the number of partitions of n with k elements not in the first hook; i.e., with n - (max part size) - (number of parts) + 1 = k. If this is correct, we have T(n,0) = n and for k > 0, T(n,k) = sum_{j >= max(0,2k-n+2)} j * T(k,j). This is equivalent to T(n,k) = T(n-1,k) + sum_{j >= max(0,2k-n+2)} T(k,j) and thus to T(n,k) = 2* T(n-1,k) - T(n-2,k) + T(k,2k-n+2) [taking T(n,k) = 0 if k < 0]. It also implies the correctness of the conjecture about the row lengths. - Franklin T. Adams-Watters, May 27 2008

Examples

			The table begins:
1
2
3
4 1
5 2
6 3 2
7 4 4
8 5 6 3
9 6 8 6 1
...
		

Crossrefs

Programs

  • Maple
    a:=n->sort(simplify(sum(product((1-q^i),i=n-r+1..n)/product((1-q^j),j=1..r), r=0..n))):T := proc(n,k) if k=n then n+1 elif k>n then 0 else coeff(a(k),q^(n-k)) fi end: b:=proc(n,k) if T(n,n-k)>0 then T(n,n-k) else fi end:seq(seq(b(n,k),k=0..n+1),n=0..20); # Emeric Deutsch, May 15 2004
  • Mathematica
    a[n_] := Sum[Product[1-q^i, {i, n-r+1, n}]/Product[1-q^j, {j, 1, r}], {r, 0, n}] // Simplify; T [n_, k_] := Which[k == n, n+1, k>n, 0, True, Coefficient[a[k], q^(n - k)]]; Table[Table[T[n, k], {k, n, 0, -1}] // DeleteCases[#, 0]&, {n, 0,  21}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Maple *)

Extensions

More terms from Emeric Deutsch, May 15 2004

A083906 Table read by rows: T(n, k) is the number of length n binary words with exactly k inversions.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40, 40, 30, 26, 18, 14, 8, 6, 2, 2
Offset: 0

Views

Author

Alford Arnold, Jun 19 2003

Keywords

Comments

There are A033638(n) values in the n-th row, compliant with the order of the polynomial.
In the example for n=6 detailed below, the orders of [6, k]_q are 1, 6, 9, 10, 9, 6, 1 for k = 0..6,
the maximum order 10 defining the row length.
Note that 1 6 9 10 9 6 1 and related distributions are antidiagonals of A077028.
A083480 is a variation illustrating a relationship with numeric partitions, A000041.
The rows are formed by the nonzero entries of the columns of A049597.
If n is even the n-th row converges to n+1, n-1, n-4, ..., 19, 13, 7, 4, 3, 1 which is A029552 reversed, and if n is odd the sequence is twice A098613. - Michael Somos, Jun 25 2017

Examples

			When viewed as an array with A033638(r) entries per row, the table begins:
. 1 ............... : 1
. 2 ............... : 2
. 3 1 ............. : 3 + q = (1) + (1+q) + (1)
. 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1
. 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4
. 6 4 6 6 6 2 2
. 7 5 8 9 11 9 7 4 3 1
. 8 6 10 12 16 16 18 12 12 8 6 2 2
. 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1
...
The second but last row is from the sum over 7 q-polynomials coefficients:
. 1 ....... : 1 = [6,0]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q
. 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q
. 1 ....... : 1 = [6,6]_q
		

References

  • George E. Andrews, 'Theory of Partitions', 1976, page 242.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 100);
    qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
    A083906:= func< n,k | Coefficient(R!((&+[qBinom(n,k,x): k in [0..n]]) ), k) >;
    [A083906(n,k): k in [0..Floor(n^2/4)], n in [0..12]]; // G. C. Greubel, Feb 13 2024
    
  • Maple
    QBinomial := proc(n,m,q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ) ; expand(%) ; end:
    A083906 := proc(n,k) add( QBinomial(n,m,q),m=0..n ) ; coeftayl(%,q=0,k) ; end:
    for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d,",A083906(n,k)) ; od: od: # R. J. Mathar, May 28 2009
    T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi;
    if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end:
    seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8);  # Peter Luschny, Feb 16 2024
  • Mathematica
    Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]],q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
  • PARI
    {T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
    
  • SageMath
    def T(n,k): # T = A083906
        if k<0 or k> (n^2//4): return 0
        elif n<2 : return n+1
        else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1)
    flatten([[T(n,k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024

Formula

T(n, k) is the coefficient [q^k] of the Sum_{m=0..n} [n, m]_q over q-Binomial coefficients.
Row sums: Sum_{k=0..floor(n^2/4)} T(n,k) = 2^n.
For n >= k, T(n+1,k) = T(n, k) + A000041(k). - Geoffrey Critzer, Feb 12 2021
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A060546(n). - G. C. Greubel, Feb 13 2024
From Mikhail Kurkov, Feb 14 2024: (Start)
T(n, k) = 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) for n >= 2 and 0 <= k <= floor(n^2/4).
Sum_{i=0..n} T(n-i, i) = A000041(n+1). Note that upper limit of the summation can be reduced to A083479(n) = (n+2) - ceiling(sqrt(4*n)).
Both results were proved (see MathOverflow link for details). (End)
From G. C. Greubel, Feb 17 2024: (Start)
T(n, floor(n^2/4)) = A000034(n).
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A016116(n+1).
Sum_{k=0..(n + 2) - ceiling(sqrt(4*n))} (-1)^k*T(n - k, k) = (-1)^n*A000025(n+1) = -A260460(n+1). (End)

Extensions

Edited by R. J. Mathar, May 28 2009
New name using a comment from Geoffrey Critzer by Peter Luschny, Feb 17 2024

A325406 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 1, 3, 2, 0, 0, 1, 4, 2, 3, 1, 0, 0, 1, 1, 5, 5, 2, 1, 0, 0, 1, 3, 5, 6, 3, 3, 1, 0, 0, 1, 3, 4, 8, 7, 1, 4, 2, 0, 0, 1, 3, 6, 11, 7, 5, 2, 4, 2, 1, 0, 1, 1, 6, 13, 8, 9, 9, 0, 4, 3, 1, 0, 1, 6, 7, 11, 12, 9
Offset: 0

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences. The distinct differences of any degree are the union of the k-th differences for all k >= 0. For example, the k-th differences of (1,1,2,4) for k = 0...3 are:
(1,1,2,4)
(0,1,2)
(1,1)
(0)
so there are a total of 4 distinct differences of any degree, namely {0,1,2,4}.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  1  2  0
  0  1  2  2  0
  0  1  1  3  2  0
  0  1  4  2  3  1  0
  0  1  1  5  5  2  1  0
  0  1  3  5  6  3  3  1  0
  0  1  3  4  8  7  1  4  2  0
  0  1  3  6 11  7  5  2  4  2  1
  0  1  1  6 13  8  9  9  0  4  3  1
  0  1  6  7 11 12  9 10  8  4  3  2  2
  0  1  1  7 18  9 14 19  5 10  3  5  4  1
  0  1  3  9 17  9 22 20 15  9  7  6  5  4  1
  0  1  4  8 22 11 16 24 22 19 10 11  2  8  7  2
  0  1  4 10 23 15 24 23 27 27 12 14 11  8  8  5  5
Row n = 8 counts the following partitions:
  (8)  (44)        (17)       (116)     (134)   (1133)   (111122)
       (2222)      (26)       (125)     (233)   (11123)
       (11111111)  (35)       (1115)    (1223)  (11222)
                   (224)      (1124)
                   (1111112)  (11114)
                              (111113)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,0,Length[#]}]]==k&]],{n,0,16},{k,0,n}]

A083479 The natural numbers with all terms of A033638 inserted.

Original entry on oeis.org

0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 56, 57, 57
Offset: 0

Views

Author

Alford Arnold, Jun 08 2003

Keywords

Comments

Row n of A049597 has a(n+1) nonzero values.
When considering the set of nested parabolas defined by -(x^2) + p*x for integer values of p, a(n) tells us how many parabolas are intersected by the line from (1,n) to (n,n). - Gregory R. Bryant, Apr 01 2013
Number of distinct perimeters for polyominoes with n square cells. - Wesley Prosser, Sep 06 2017

Examples

			There are three 1's, one from the natural numbers and two from A033638.
When viewed as an array the sequence begins:
   0
   1
   1  1
   2  2
   3  3  4
   5  5  6
   7  7  8  9
  10 10 11 12
  13 13 14 15 16
  17 17 18 19 20
  21 21 22 23 24 25
  26 26 27 28 29 30
  ...
		

Crossrefs

Programs

  • Haskell
    a083479 n = a083479_list !! n
    a083479_list = m [0..] a033638_list where
       m xs'@(x:xs) ys'@(y:ys) | x <= y    = x : m xs ys'
                               | otherwise = y : m xs' ys
    -- Reinhard Zumkeller, Apr 06 2012
    
  • Magma
    [n eq 0 select 0 else (n+2)-Ceiling(Sqrt(4*n)): n in [0..100]]; // G. C. Greubel, Feb 17 2024
    
  • Mathematica
    Table[(n + 2) - Ceiling@ Sqrt[4 n] - 2 Boole[n == 0], {n, 0, 73}] (* Michael De Vlieger, Sep 05 2017 *)
  • Maxima
    a(n):=((n+2)-ceiling(sqrt(4*n))); /* Gregory R. Bryant, Apr 01 2013 */
    
  • Python
    from math import isqrt
    def A083479(n): return n+1-isqrt((n<<2)-1) if n else 0 # Chai Wah Wu, Jul 28 2022
    
  • SageMath
    [(n+2)-ceil(sqrt(4*n)) -2*int(n==0) for n in range(101)] # G. C. Greubel, Feb 17 2024

Formula

a(n) = (n+2) - ceiling(sqrt(4*n)), for n > 0. - Gregory R. Bryant, Apr 01 2013
From Wesley Prosser, Sep 06 2017: (Start)
a(n) = (n+2) - A027709(n)/2.
a(n) = (n+2) - A027434(n).
a(n) = (2n+2) - A049068(n).
a(n) = (2n+3) - A080037(n).
(End)

Extensions

Edited and extended by David Wasserman, Nov 16 2004

A330369 Triangle read by rows: T(n,k) (1 <= k <= n) is the total number of right angles of size k in all partitions of n.

Original entry on oeis.org

1, 0, 2, 0, 0, 3, 1, 0, 1, 4, 2, 0, 0, 2, 5, 3, 2, 0, 2, 3, 6, 4, 4, 0, 0, 4, 4, 7, 5, 6, 3, 0, 3, 6, 5, 8, 7, 8, 7, 0, 1, 6, 8, 6, 9, 9, 10, 11, 4, 0, 6, 9, 10, 7, 10, 13, 12, 15, 10, 0, 2, 11, 12, 12, 8, 11
Offset: 1

Views

Author

Omar E. Pol, Dec 12 2019

Keywords

Comments

This triangle has the property that it contains the triangle A049597, since if we replace with zeros the positive terms before the first zero in the row n of this triangle, we get the triangle A049597.
Hence the sum of the terms after the last zero in row n equals A000041(n), the number of partitions of n (see the Example section).
Observation: at least the first 11 terms of column 1 coincide with A188674 (using the same indices).

Examples

			Triangle begins:
   1;
   0,  2;
   0,  0,  3;
   1,  0,  1,  4;
   2,  0,  0,  2,  5;
   3,  2,  0,  2,  3,  6;
   4,  4,  0,  0,  4,  4,  7;
   5,  6,  3,  0,  3,  6,  5,  8;
   7,  8,  7,  0,  1,  6,  8,  6,  9;
   9, 10, 11,  4,  0,  6,  9, 10,  7, 10;
  13, 12, 15, 10,  0,  2, 11, 12, 12,  8, 11;
Figure 1 below shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. Figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2.
.
.                                     Right-angles   Right
Part   Ferrers diagram         Part   diagram        angle
                                      _ _ _ _ _ _ _
  7    * * * * * * *             7   |  _ _ _ _ _ _|  14
  6    * * * * * *               6   | |  _ _ _ _|     8
  3    * * *                     3   | | | |           2
  3    * * *                     3   | | |_|
  2    * *                       2   | |_|
  1    *                         1   | |
  1    *                         1   | |
  1    *                         1   |_|
.
       Figure 1.                      Figure 2.
.
For n = 8 the partitions of 8 and their respective right-angles diagrams are as follows:
.
    _       _ _       _ _ _       _ _ _ _       _ _ _ _ _
  1| |8   2|  _|8   3|  _ _|8   4|  _ _ _|8   5|  _ _ _ _|8
  1| |    1| |      1| |        1| |          1| |
  1| |    1| |      1| |        1| |          1| |
  1| |    1| |      1| |        1| |          1|_|
  1| |    1| |      1| |        1|_|
  1| |    1| |      1|_|
  1| |    1|_|
  1|_|
    _ _ _ _ _ _       _ _ _ _ _ _ _       _ _ _ _ _ _ _ _
  6|  _ _ _ _ _|8   7|  _ _ _ _ _ _|8   8|_ _ _ _ _ _ _ _|8
  1| |              1|_|
  1|_|
.
    _ _       _ _ _       _ _ _ _       _ _ _ _ _       _ _ _ _ _ _
  2|  _|7   3|  _ _|7   4|  _ _ _|7   5|  _ _ _ _|7   6|  _ _ _ _ _|7
  2| |_|1   2| |_|  1   2| |_|    1   2| |_|      1   2|_|_|        1
  1| |      1| |        1| |          1|_|
  1| |      1| |        1|_|
  1| |      1|_|
  1|_|
.
    _ _       _ _ _       _ _ _       _ _ _ _       _ _ _ _       _ _ _ _ _
  2|  _|6   3|  _ _|6   3|  _ _|6   4|  _ _ _|6   4|  _ _ _|6   5|  _ _ _ _|6
  2| | |2   2| | |  2   3| |_ _|2   2| | |    2   3| |_ _|  2   3|_|_ _|    2
  2| |_|    2| |_|      1| |        2|_|_|        1|_|
  1| |      1|_|        1|_|
  1|_|
.
    _ _       _ _ _        _ _ _ _
  2|  _|5   3|  _ _|5    4|  _ _ _|5
  2| | |3   3| |  _|3    4|_|_ _ _|3
  2| | |    2|_|_|
  2|_|_|
.
There are  5 right angles of size 1, so T(8,1) = 5.
There are  6 right angles of size 2, so T(8,2) = 6.
There are  3 right angles of size 3, so T(8,3) = 3.
There are no right angle  of size 4, so T(8,4) = 0.
There are  3 right angles of size 5, so T(8,5) = 3.
There are  6 right angles of size 6, so T(8,6) = 6.
There are  5 right angles of size 7, so T(8,7) = 5.
There are  8 right angles of size 8, so T(8,8) = 8.
Hence the 8th row of triangle is [5, 6, 3, 0, 3, 6, 5, 8].
Note that the sum of the terms after the last zero is 3 + 6 + 5 + 8 = 22, equaling A000041(8) = 22, the number of partitions of 8.
		

References

  • G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143 [Defines the right angles in the Ferrers graph of a partition. - N. J. A. Sloane, Nov 20 2020]

Crossrefs

Row sums give A115995.
Right border gives A000027.

A325458 Triangle read by rows where T(n,k) is the number of integer partitions of n with largest hook of size k, i.e., with (largest part) + (number of parts) - 1 = k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 2, 5, 0, 0, 0, 0, 2, 3, 6, 0, 0, 0, 0, 0, 4, 4, 7, 0, 0, 0, 0, 0, 3, 6, 5, 8, 0, 0, 0, 0, 0, 1, 6, 8, 6, 9, 0, 0, 0, 0, 0, 0, 6, 9, 10, 7, 10, 0, 0, 0, 0, 0, 0, 2, 11, 12, 12, 8, 11
Offset: 0

Views

Author

Gus Wiseman, May 04 2019

Keywords

Comments

Conjectured to be equal to A049597.

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  0  3
  0  0  0  1  4
  0  0  0  0  2  5
  0  0  0  0  2  3  6
  0  0  0  0  0  4  4  7
  0  0  0  0  0  3  6  5  8
  0  0  0  0  0  1  6  8  6  9
  0  0  0  0  0  0  6  9 10  7 10
  0  0  0  0  0  0  2 11 12 12  8 11
  0  0  0  0  0  0  2  9 16 15 14  9 12
  0  0  0  0  0  0  0  7 16 21 18 16 10 13
  0  0  0  0  0  0  0  4 18 23 26 21 18 11 14
  0  0  0  0  0  0  0  3 12 29 30 31 24 20 12 15
  0  0  0  0  0  0  0  1 12 27 40 37 36 27 22 13 16
  0  0  0  0  0  0  0  0  8 26 42 51 44 41 30 24 14 17
  0  0  0  0  0  0  0  0  6 23 48 57 62 51 46 33 26 15 18
  0  0  0  0  0  0  0  0  2 21 44 70 72 73 58 51 36 28 16 19
Row n = 9 counts the following partitions:
  (333)  (54)     (63)      (72)       (9)
         (432)    (522)     (621)      (81)
         (441)    (531)     (5211)     (711)
         (3222)   (4221)    (42111)    (6111)
         (3321)   (4311)    (321111)   (51111)
         (22221)  (32211)   (2211111)  (411111)
                  (33111)              (3111111)
                  (222111)             (21111111)
                                       (111111111)
		

Crossrefs

Row sums are A000041.
Column sums are 2^(k - 1) for k > 0.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],If[n==0,k==0,First[#]+Length[#]-1==k]&]],{n,0,19},{k,0,n}]

Formula

Franklin T. Adams-Watters has conjectured at A049597 that the k-th column gives the coefficients of the sum of Gaussian polynomials [k,m] for m = 0..k.

A059982 Symmetric array of numeric partitions related to 1 4 9 16 ... and 1 3 4 7 13 ..., read by rows.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 3, 5, 3, 1, 1, 5, 7, 5, 1, 2, 7, 11, 7, 2, 3, 11, 15, 11, 3, 5, 15, 22, 15, 5, 1, 7, 22, 30, 22, 7, 1, 1, 11, 30, 42, 30, 11, 1, 2, 15, 42, 56, 42, 15, 2, 3, 22, 56, 77, 56, 22, 3, 5, 30, 77, 101, 77, 30, 5, 7, 42, 101, 135, 101, 42, 7, 11, 56, 135, 176
Offset: 0

Views

Author

Alford Arnold, Mar 06 2001

Keywords

Comments

Begin with row zero and generate a column of values using the sequence of numeric partitions (A000041). At rows 1 4 9 16 25 ... A000290, generate two new columns one each to the left and right of existing columns. Note that the row sums appear to be A029552.

Examples

			The array begins:
........................1
................1.......1.......1
................1.......2.......1
................2.......3.......2
........1.......3.......5.......3.......1
........1.......5.......7.......5.......1
........2.......7.......11......7.......2
........3.......11......15......11......3
........5.......15......22......15......5
1.......7.......22......30......22......7.......1
1.......11......30......42......30......11......1
2.......15......42......56......42......15......2
3.......22......56......77......56......22......3
5.......30......77......101.....77......30......5
		

References

  • Kass, Moody, Patera and Slansky (1990), Affine Lie Algebras, Weight Multiplicities and Branching Rules. University of California Press. Vol. I, page 108.

Crossrefs

Showing 1-7 of 7 results.