A083480
Compress the triangular array A049597 by suppressing zero entries and reversing the order of each row.
Original entry on oeis.org
1, 2, 3, 4, 1, 5, 2, 6, 3, 2, 7, 4, 4, 8, 5, 6, 3, 9, 6, 8, 6, 1, 10, 7, 10, 9, 6, 11, 8, 12, 12, 11, 2, 12, 9, 14, 15, 16, 9, 2, 13, 10, 16, 18, 21, 16, 7, 14, 11, 18, 21, 26, 23, 18, 4, 15, 12, 20, 24, 31, 30, 29, 12, 3, 16, 13, 22, 27, 36, 37, 40, 27, 12, 1, 17, 14, 24, 30, 41, 44, 51
Offset: 1
The table begins:
1
2
3
4 1
5 2
6 3 2
7 4 4
8 5 6 3
9 6 8 6 1
...
-
a:=n->sort(simplify(sum(product((1-q^i),i=n-r+1..n)/product((1-q^j),j=1..r), r=0..n))):T := proc(n,k) if k=n then n+1 elif k>n then 0 else coeff(a(k),q^(n-k)) fi end: b:=proc(n,k) if T(n,n-k)>0 then T(n,n-k) else fi end:seq(seq(b(n,k),k=0..n+1),n=0..20); # Emeric Deutsch, May 15 2004
-
a[n_] := Sum[Product[1-q^i, {i, n-r+1, n}]/Product[1-q^j, {j, 1, r}], {r, 0, n}] // Simplify; T [n_, k_] := Which[k == n, n+1, k>n, 0, True, Coefficient[a[k], q^(n - k)]]; Table[Table[T[n, k], {k, n, 0, -1}] // DeleteCases[#, 0]&, {n, 0, 21}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Maple *)
A083906
Table read by rows: T(n, k) is the number of length n binary words with exactly k inversions.
Original entry on oeis.org
1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40, 40, 30, 26, 18, 14, 8, 6, 2, 2
Offset: 0
When viewed as an array with A033638(r) entries per row, the table begins:
. 1 ............... : 1
. 2 ............... : 2
. 3 1 ............. : 3 + q = (1) + (1+q) + (1)
. 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1
. 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4
. 6 4 6 6 6 2 2
. 7 5 8 9 11 9 7 4 3 1
. 8 6 10 12 16 16 18 12 12 8 6 2 2
. 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1
...
The second but last row is from the sum over 7 q-polynomials coefficients:
. 1 ....... : 1 = [6,0]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q
. 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q
. 1 ....... : 1 = [6,6]_q
- George E. Andrews, 'Theory of Partitions', 1976, page 242.
- Seiichi Manyama, Rows n = 0..48, flattened
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- Alexander Gruber, "The Egg:" Bizarre behavior of the roots of a family of polynomials Mathematics StackExchange Oct 04 2012
- MathOverflow, Partition numbers and Gaussian binomial coefficient
- Eric Weisstein, q-Binomial Coefficient, Mathworld.
- Wikipedia, q-binomial
- Index entries for sequences related to binary linear codes
Cf.
A000025,
A000034,
A000041,
A016116,
A029552,
A033638,
A060546,
A063746,
A077028,
A083479,
A083480,
A098613,
A260460.
-
R:=PowerSeriesRing(Rationals(), 100);
qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
A083906:= func< n,k | Coefficient(R!((&+[qBinom(n,k,x): k in [0..n]]) ), k) >;
[A083906(n,k): k in [0..Floor(n^2/4)], n in [0..12]]; // G. C. Greubel, Feb 13 2024
-
QBinomial := proc(n,m,q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ) ; expand(%) ; end:
A083906 := proc(n,k) add( QBinomial(n,m,q),m=0..n ) ; coeftayl(%,q=0,k) ; end:
for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d,",A083906(n,k)) ; od: od: # R. J. Mathar, May 28 2009
T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi;
if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end:
seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8); # Peter Luschny, Feb 16 2024
-
Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]],q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
-
{T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
-
def T(n,k): # T = A083906
if k<0 or k> (n^2//4): return 0
elif n<2 : return n+1
else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1)
flatten([[T(n,k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024
A325406
Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 2, 2, 0, 0, 1, 1, 3, 2, 0, 0, 1, 4, 2, 3, 1, 0, 0, 1, 1, 5, 5, 2, 1, 0, 0, 1, 3, 5, 6, 3, 3, 1, 0, 0, 1, 3, 4, 8, 7, 1, 4, 2, 0, 0, 1, 3, 6, 11, 7, 5, 2, 4, 2, 1, 0, 1, 1, 6, 13, 8, 9, 9, 0, 4, 3, 1, 0, 1, 6, 7, 11, 12, 9
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 1 2 0
0 1 2 2 0
0 1 1 3 2 0
0 1 4 2 3 1 0
0 1 1 5 5 2 1 0
0 1 3 5 6 3 3 1 0
0 1 3 4 8 7 1 4 2 0
0 1 3 6 11 7 5 2 4 2 1
0 1 1 6 13 8 9 9 0 4 3 1
0 1 6 7 11 12 9 10 8 4 3 2 2
0 1 1 7 18 9 14 19 5 10 3 5 4 1
0 1 3 9 17 9 22 20 15 9 7 6 5 4 1
0 1 4 8 22 11 16 24 22 19 10 11 2 8 7 2
0 1 4 10 23 15 24 23 27 27 12 14 11 8 8 5 5
Row n = 8 counts the following partitions:
(8) (44) (17) (116) (134) (1133) (111122)
(2222) (26) (125) (233) (11123)
(11111111) (35) (1115) (1223) (11222)
(224) (1124)
(1111112) (11114)
(111113)
-
Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,0,Length[#]}]]==k&]],{n,0,16},{k,0,n}]
A083479
The natural numbers with all terms of A033638 inserted.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 56, 57, 57
Offset: 0
There are three 1's, one from the natural numbers and two from A033638.
When viewed as an array the sequence begins:
0
1
1 1
2 2
3 3 4
5 5 6
7 7 8 9
10 10 11 12
13 13 14 15 16
17 17 18 19 20
21 21 22 23 24 25
26 26 27 28 29 30
...
-
a083479 n = a083479_list !! n
a083479_list = m [0..] a033638_list where
m xs'@(x:xs) ys'@(y:ys) | x <= y = x : m xs ys'
| otherwise = y : m xs' ys
-- Reinhard Zumkeller, Apr 06 2012
-
[n eq 0 select 0 else (n+2)-Ceiling(Sqrt(4*n)): n in [0..100]]; // G. C. Greubel, Feb 17 2024
-
Table[(n + 2) - Ceiling@ Sqrt[4 n] - 2 Boole[n == 0], {n, 0, 73}] (* Michael De Vlieger, Sep 05 2017 *)
-
a(n):=((n+2)-ceiling(sqrt(4*n))); /* Gregory R. Bryant, Apr 01 2013 */
-
from math import isqrt
def A083479(n): return n+1-isqrt((n<<2)-1) if n else 0 # Chai Wah Wu, Jul 28 2022
-
[(n+2)-ceil(sqrt(4*n)) -2*int(n==0) for n in range(101)] # G. C. Greubel, Feb 17 2024
A330369
Triangle read by rows: T(n,k) (1 <= k <= n) is the total number of right angles of size k in all partitions of n.
Original entry on oeis.org
1, 0, 2, 0, 0, 3, 1, 0, 1, 4, 2, 0, 0, 2, 5, 3, 2, 0, 2, 3, 6, 4, 4, 0, 0, 4, 4, 7, 5, 6, 3, 0, 3, 6, 5, 8, 7, 8, 7, 0, 1, 6, 8, 6, 9, 9, 10, 11, 4, 0, 6, 9, 10, 7, 10, 13, 12, 15, 10, 0, 2, 11, 12, 12, 8, 11
Offset: 1
Triangle begins:
1;
0, 2;
0, 0, 3;
1, 0, 1, 4;
2, 0, 0, 2, 5;
3, 2, 0, 2, 3, 6;
4, 4, 0, 0, 4, 4, 7;
5, 6, 3, 0, 3, 6, 5, 8;
7, 8, 7, 0, 1, 6, 8, 6, 9;
9, 10, 11, 4, 0, 6, 9, 10, 7, 10;
13, 12, 15, 10, 0, 2, 11, 12, 12, 8, 11;
Figure 1 below shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. Figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2.
.
. Right-angles Right
Part Ferrers diagram Part diagram angle
_ _ _ _ _ _ _
7 * * * * * * * 7 | _ _ _ _ _ _| 14
6 * * * * * * 6 | | _ _ _ _| 8
3 * * * 3 | | | | 2
3 * * * 3 | | |_|
2 * * 2 | |_|
1 * 1 | |
1 * 1 | |
1 * 1 |_|
.
Figure 1. Figure 2.
.
For n = 8 the partitions of 8 and their respective right-angles diagrams are as follows:
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1|_|
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7
2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6
2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2
2| |_| 2| |_| 1| | 2|_|_| 1|_|
1| | 1|_| 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _
2| _|5 3| _ _|5 4| _ _ _|5
2| | |3 3| | _|3 4|_|_ _ _|3
2| | | 2|_|_|
2|_|_|
.
There are 5 right angles of size 1, so T(8,1) = 5.
There are 6 right angles of size 2, so T(8,2) = 6.
There are 3 right angles of size 3, so T(8,3) = 3.
There are no right angle of size 4, so T(8,4) = 0.
There are 3 right angles of size 5, so T(8,5) = 3.
There are 6 right angles of size 6, so T(8,6) = 6.
There are 5 right angles of size 7, so T(8,7) = 5.
There are 8 right angles of size 8, so T(8,8) = 8.
Hence the 8th row of triangle is [5, 6, 3, 0, 3, 6, 5, 8].
Note that the sum of the terms after the last zero is 3 + 6 + 5 + 8 = 22, equaling A000041(8) = 22, the number of partitions of 8.
- G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143 [Defines the right angles in the Ferrers graph of a partition. - N. J. A. Sloane, Nov 20 2020]
A325458
Triangle read by rows where T(n,k) is the number of integer partitions of n with largest hook of size k, i.e., with (largest part) + (number of parts) - 1 = k.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 0, 3, 0, 0, 0, 1, 4, 0, 0, 0, 0, 2, 5, 0, 0, 0, 0, 2, 3, 6, 0, 0, 0, 0, 0, 4, 4, 7, 0, 0, 0, 0, 0, 3, 6, 5, 8, 0, 0, 0, 0, 0, 1, 6, 8, 6, 9, 0, 0, 0, 0, 0, 0, 6, 9, 10, 7, 10, 0, 0, 0, 0, 0, 0, 2, 11, 12, 12, 8, 11
Offset: 0
Triangle begins:
1
0 1
0 0 2
0 0 0 3
0 0 0 1 4
0 0 0 0 2 5
0 0 0 0 2 3 6
0 0 0 0 0 4 4 7
0 0 0 0 0 3 6 5 8
0 0 0 0 0 1 6 8 6 9
0 0 0 0 0 0 6 9 10 7 10
0 0 0 0 0 0 2 11 12 12 8 11
0 0 0 0 0 0 2 9 16 15 14 9 12
0 0 0 0 0 0 0 7 16 21 18 16 10 13
0 0 0 0 0 0 0 4 18 23 26 21 18 11 14
0 0 0 0 0 0 0 3 12 29 30 31 24 20 12 15
0 0 0 0 0 0 0 1 12 27 40 37 36 27 22 13 16
0 0 0 0 0 0 0 0 8 26 42 51 44 41 30 24 14 17
0 0 0 0 0 0 0 0 6 23 48 57 62 51 46 33 26 15 18
0 0 0 0 0 0 0 0 2 21 44 70 72 73 58 51 36 28 16 19
Row n = 9 counts the following partitions:
(333) (54) (63) (72) (9)
(432) (522) (621) (81)
(441) (531) (5211) (711)
(3222) (4221) (42111) (6111)
(3321) (4311) (321111) (51111)
(22221) (32211) (2211111) (411111)
(33111) (3111111)
(222111) (21111111)
(111111111)
Column sums are 2^(k - 1) for k > 0.
-
Table[Length[Select[IntegerPartitions[n],If[n==0,k==0,First[#]+Length[#]-1==k]&]],{n,0,19},{k,0,n}]
A059982
Symmetric array of numeric partitions related to 1 4 9 16 ... and 1 3 4 7 13 ..., read by rows.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 2, 3, 2, 1, 3, 5, 3, 1, 1, 5, 7, 5, 1, 2, 7, 11, 7, 2, 3, 11, 15, 11, 3, 5, 15, 22, 15, 5, 1, 7, 22, 30, 22, 7, 1, 1, 11, 30, 42, 30, 11, 1, 2, 15, 42, 56, 42, 15, 2, 3, 22, 56, 77, 56, 22, 3, 5, 30, 77, 101, 77, 30, 5, 7, 42, 101, 135, 101, 42, 7, 11, 56, 135, 176
Offset: 0
The array begins:
........................1
................1.......1.......1
................1.......2.......1
................2.......3.......2
........1.......3.......5.......3.......1
........1.......5.......7.......5.......1
........2.......7.......11......7.......2
........3.......11......15......11......3
........5.......15......22......15......5
1.......7.......22......30......22......7.......1
1.......11......30......42......30......11......1
2.......15......42......56......42......15......2
3.......22......56......77......56......22......3
5.......30......77......101.....77......30......5
- Kass, Moody, Patera and Slansky (1990), Affine Lie Algebras, Weight Multiplicities and Branching Rules. University of California Press. Vol. I, page 108.
Showing 1-7 of 7 results.
Comments