cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A325405 Heinz numbers of integer partitions y such that the k-th differences of y are distinct for all k >= 0 and are disjoint from the i-th differences for i != k.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 11, 13, 14, 15, 17, 19, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 122
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

First differs from A325388 in lacking 130.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The enumeration of these partitions by sum is given by A325404.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   19: {8}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   31: {11}
   33: {2,5}
   34: {1,7}
   35: {3,4}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],UnsameQ@@Join@@Table[Differences[primeMS[#],k],{k,0,PrimeOmega[#]}]&]

A325404 Number of reversed integer partitions y of n such that the k-th differences of y are distinct for all k >= 0 and are disjoint from the i-th differences for i != k.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 2, 4, 4, 4, 5, 7, 5, 11, 12, 11, 12, 20, 15, 24, 22, 27, 28, 37, 28, 45, 43, 48, 50, 66, 58, 79, 72, 84, 87, 112, 106, 135, 128, 158, 147, 186, 180, 218, 220, 265, 246, 304, 303, 354, 340, 412, 418, 471, 463, 538, 543, 642, 600, 711, 755
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325405.

Examples

			The a(1) = 1 through a(12) = 5 reversed partitions (A = 10, B = 11, C = 12):
  (1)  (2)  (3)  (4)   (5)   (6)   (7)   (8)   (9)   (A)   (B)    (C)
                 (13)  (14)  (15)  (16)  (17)  (18)  (19)  (29)   (39)
                       (23)        (25)  (26)  (27)  (28)  (38)   (57)
                                   (34)  (35)  (45)  (37)  (47)   (1B)
                                                     (46)  (56)   (2A)
                                                           (1A)
                                                           (146)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],UnsameQ@@Join@@Table[Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]

A325468 Number of integer partitions y of n such that the k-th differences of y are distinct (independently) for all k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 6, 6, 9, 11, 10, 15, 17, 19, 24, 31, 26, 40, 43, 51, 52, 72, 66, 89, 88, 111, 119, 150, 130, 183, 193, 229, 231, 279, 287, 358, 365, 430, 426, 538, 535, 649, 680, 742, 803, 943, 982, 1136, 1115
Offset: 0

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325467.

Examples

			The a(1) = 1 through a(9) = 6 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
            (21)  (31)  (32)  (42)  (43)   (53)   (54)
                        (41)  (51)  (52)   (62)   (63)
                                    (61)   (71)   (72)
                                    (421)  (431)  (81)
                                           (521)  (621)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[UnsameQ@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]

A325354 Number of reversed integer partitions of n whose k-th differences are weakly increasing for all k.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 10, 11, 15, 19, 24, 25, 36, 37, 43, 54, 63, 64, 80, 81, 100, 113, 122, 123, 151, 166, 178, 195, 217, 218, 269, 270, 295, 316, 332, 372, 424, 425, 447, 472, 547, 550, 616, 617, 659, 750, 777, 782, 862, 885, 995, 1032, 1083, 1090, 1176, 1275
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325400.

Examples

			The a(1) = 1 through a(8) = 15 reversed partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (13)    (14)     (15)      (16)       (17)
             (111)  (22)    (23)     (24)      (25)       (26)
                    (112)   (113)    (33)      (34)       (35)
                    (1111)  (1112)   (114)     (115)      (44)
                            (11111)  (123)     (124)      (116)
                                     (222)     (223)      (125)
                                     (1113)    (1114)     (224)
                                     (11112)   (11113)    (1115)
                                     (111111)  (111112)   (1124)
                                               (1111111)  (2222)
                                                          (11114)
                                                          (111113)
                                                          (1111112)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Sort/@IntegerPartitions[n],And@@Table[OrderedQ[Differences[#,k]],{k,0,Length[#]}]&]],{n,0,30}]

A325391 Number of reversed integer partitions of n whose k-th differences are strictly increasing for all k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 6, 8, 9, 9, 13, 13, 15, 19, 20, 20, 28, 28, 30, 36, 40, 40, 50, 50, 56, 64, 68, 68, 86, 86, 92, 102, 112, 114, 133, 133, 146, 158, 173, 173, 202, 202, 215, 237, 256, 256, 287, 287, 324, 340, 359, 359, 403, 423, 446, 464, 495, 495
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325398.

Examples

			The a(1) = 1 through a(9) = 6 reversed partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)
            (12)  (13)  (14)  (15)  (16)   (17)   (18)
                        (23)  (24)  (25)   (26)   (27)
                                    (34)   (35)   (36)
                                    (124)  (125)  (45)
                                                  (126)
The smallest reversed strict partition with strictly increasing differences not counted by this sequence is (1,2,4,7), whose first and second differences are (1,2,3) and (1,1) respectively.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],And@@Table[Less@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]

A325393 Number of integer partitions of n whose k-th differences are strictly decreasing for all k >= 0.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 8, 7, 9, 11, 10, 12, 15, 13, 16, 19, 18, 20, 24, 22, 26, 29, 28, 31, 37, 33, 38, 43, 42, 44, 52, 48, 55, 59, 58, 62, 72, 65, 74, 80, 80, 82, 94, 88, 99, 103, 104, 108, 123, 114, 126, 133, 135, 137, 155, 145, 161, 166, 169, 174
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325399.

Examples

			The a(1) = 1 through a(9) = 5 partitions:
  (1)  (2)  (3)   (4)   (5)   (6)   (7)   (8)    (9)
            (21)  (31)  (32)  (42)  (43)  (53)   (54)
                        (41)  (51)  (52)  (62)   (63)
                                    (61)  (71)   (72)
                                          (431)  (81)
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[Greater@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]

A325398 Heinz numbers of reversed integer partitions whose k-th differences are strictly increasing for all k >= 0.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 106, 107, 109
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

First differs from A301899 in lacking 105. First differs from A325399 in having 42.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The enumeration of these partitions by sum is given by A325391.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}
    2: {1}
    3: {2}
    5: {3}
    6: {1,2}
    7: {4}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   17: {7}
   19: {8}
   21: {2,4}
   22: {1,5}
   23: {9}
   26: {1,6}
   29: {10}
   31: {11}
   33: {2,5}
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And@@Table[Less@@Differences[primeMS[#],k],{k,0,PrimeOmega[#]}]&]

A325353 Number of integer partitions of n whose k-th differences are weakly decreasing for all k >= 0.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 7, 7, 9, 11, 12, 13, 17, 16, 19, 23, 23, 24, 30, 29, 35, 37, 37, 40, 49, 47, 51, 56, 59, 61, 73, 65, 75, 80, 84, 91, 99, 91, 103, 112, 120, 114, 132, 126, 143, 154, 147, 152, 175, 169, 190, 187, 194, 198, 226, 225, 231, 236, 246, 256, 293
Offset: 0

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.
The Heinz numbers of these partitions are given by A325397.

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (221)    (51)      (61)       (62)
                            (11111)  (222)     (331)      (71)
                                     (321)     (2221)     (332)
                                     (111111)  (1111111)  (431)
                                                          (2222)
                                                          (11111111)
The first partition that has weakly decreasing differences (A320466) but is not counted under a(9) is (3,3,2,1), whose first and second differences are (0,-1,-1) and (-1,0) respectively.
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],And@@Table[GreaterEqual@@Differences[#,k],{k,0,Length[#]}]&]],{n,0,30}]

A325466 Triangle read by rows where T(n,k) is the number of reversed integer partitions of n with k distinct differences of any degree > 0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 0, 0, 1, 3, 1, 0, 0, 1, 3, 2, 1, 0, 0, 1, 5, 4, 0, 1, 0, 0, 1, 4, 6, 3, 0, 1, 0, 0, 1, 6, 6, 4, 3, 1, 1, 0, 0, 1, 6, 10, 4, 2, 4, 1, 2, 0, 0, 1, 7, 12, 8, 3, 3, 4, 1, 2, 1, 0, 1, 6, 13, 11, 2, 11, 3, 4, 0, 3, 1, 1, 1, 10, 16, 7, 10, 10
Offset: 0

Views

Author

Gus Wiseman, May 04 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The zeroth differences of a sequence are the sequence itself, while the k-th differences for k > 0 are the differences of the (k-1)-th differences.

Examples

			Triangle begins:
  1
  1  0
  1  1  0
  1  2  0  0
  1  3  1  0  0
  1  3  2  1  0  0
  1  5  4  0  1  0  0
  1  4  6  3  0  1  0  0
  1  6  6  4  3  1  1  0  0
  1  6 10  4  2  4  1  2  0  0
  1  7 12  8  3  3  4  1  2  1  0
  1  6 13 11  2 11  3  4  0  3  1  1
  1 10 16  7 10 10  6  6  5  1  1  2  1
  1  7 18 14  7 16 11  6  4  8  0  5  0  1
  1  9 20 18 10 20 13 10 10  4  5  5  2  2  2
  1 10 26 18 10 24 13 19 13 10  6  6  2  8  1  2
  1 11 25 24 16 28 19 24 14 15  9 10  9  5  2  7  1
Row 7 counts the following reversed partitions (empty columns not shown):
  (7)  (16)       (115)     (133)   (11122)
       (25)       (124)     (1123)
       (34)       (223)     (1222)
       (1111111)  (1114)
                  (11113)
                  (111112)
Row 9 counts the following reversed partitions (empty columns not shown):
(9)  (18)         (117)       (126)    (1125)   (1134)    (11223)  (111222)
     (27)         (135)       (144)    (11124)  (1224)             (1111122)
     (36)         (225)       (1233)            (11133)
     (45)         (234)       (12222)           (111123)
     (333)        (1116)
     (111111111)  (2223)
                  (11115)
                  (111114)
                  (1111113)
                  (11111112)
		

Crossrefs

Row sums are A000041. Column k = 1 is A088922.

Programs

  • Mathematica
    Table[Length[Select[Reverse/@IntegerPartitions[n],Length[Union@@Table[Differences[#,i],{i,1,Length[#]}]]==k&]],{n,0,16},{k,0,n}]

A355523 Number of distinct differences between adjacent prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 1, 2, 0, 2, 2, 2, 0, 2, 0, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			For example, the prime indices of 22770 are {1,2,2,3,5,9}, with differences (1,0,1,2,4), so a(22770) = 4.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Counting m such that A056239(m) = n and a(m) = k gives A279945.
With multiplicity we have A252736(n) = A001222(n) - 1.
The maximal difference is A286470, minimal A355524.
A008578 gives the positions of 0's.
A287352 lists differences between 0-prepended prime indices.
A355534 lists augmented differences between prime indices.
A355536 lists differences between prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Differences[primeMS[n]]]],{n,1000}]
  • PARI
    A355523(n) = if(1==n, 0, my(pis = apply(primepi,factor(n)[,1]), difs = vector(#pis-1, i, pis[i+1]-pis[i])); (#Set(difs)+!issquarefree(n))); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025
Showing 1-10 of 10 results.