A161161
Irregular triangle of differences T(n,k) = A083906(n,k) - A083906(n-1,k) of q-Binomial coefficients.
Original entry on oeis.org
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 3, 5, 2, 2, 1, 1, 2, 3, 5, 7, 5, 4, 3, 1, 1, 1, 2, 3, 5, 7, 11, 8, 9, 7, 6, 2, 2, 1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11, 7, 4, 3, 1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 32, 37, 42, 44
Offset: 1
The differences between 5 3 4 3 1 and 4 2 2 yield row four : 1 1 2 3 1.
Triangle begins:
1;
1, 1;
1, 1, 2;
1, 1, 2, 3, 1;
1, 1, 2, 3, 5, 2, 2;
1, 1, 2, 3, 5, 7, 5, 4, 3, 1;
1, 1, 2, 3, 5, 7, 11, 8, 9, 7, 6, 2, 2;
1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11, 7, 4, 3, 1;
1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2;
...
- Michael De Vlieger, Table of n, a(n) for n = 1..2390 (rows 1..30, flattened)
- William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 16.
- M. Isachenkov, I. Kirsch, and V. Schomerus, Chiral Primaries in Strange Metals, arXiv preprint arXiv:1403.6857 [hep-th], 2014. See Eq. (4.6).
-
R:=PowerSeriesRing(Rationals(), 100);
qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
A083906:= func< n,k | Coefficient(R!( (&+[qBinom(n,k,x): k in [0..n]]) ), k) >;
A161161:= func< n,k | A083906(n,k) - A083906(n-1,k) >;
[A161161(n,k): k in [0..Floor(n^2/4)], n in [1..12]]; // G. C. Greubel, Feb 13 2024
-
A161161 := proc(n,m)
A083906(n,m)-A083906(n-1,m) ;
end proc:
for n from 0 to 10 do
for k from 0 to A033638(n)-1 do
printf("%d, ", A161161(n, k)) ;
od:
od: # R. J. Mathar, Jul 13 2012
-
b[n_, k_] := b[n, k] = SeriesCoefficient[Sum[QBinomial[n, m, q], {m, 0, n}], {q, 0, k}];
T[n_, k_] := b[n, k] - b[n - 1, k];
Table[Table[T[n, k], {k, 0, n^2/4}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
-
def t(n, k): # t = A083906
if k<0 or k> (n^2//4): return 0
elif n<2 : return n+1
else: return 2*t(n-1, k) - t(n-2, k) + t(n-2, k-n+1)
def A161161(n,k): return t(n, k) - t(n-1, k)
flatten([[A161161(n, k) for k in range(int(n^2//4)+1)] for n in range(1,13)]) # G. C. Greubel, Feb 13 2024
A006116
Sum of Gaussian binomial coefficients [n,k] for q=2 and k=0..n.
Original entry on oeis.org
1, 2, 5, 16, 67, 374, 2825, 29212, 417199, 8283458, 229755605, 8933488744, 488176700923, 37558989808526, 4073773336877345, 623476476706836148, 134732283882873635911, 41128995468748254231002, 17741753171749626840952685, 10817161765507572862559462656
Offset: 0
O.g.f.: A(x) = 1/(1-x) + x/((1-x)*(1-2x)) + x^2/((1-x)*(1-2x)*(1-4x)) + x^3/((1-x)*(1-2x)*(1-4x)*(1-8x)) + ...
Also generated by iterated binomial transforms in the following way:
[1,2,5,16,67,374,2825,29212,...] = BINOMIAL([1,1,2,6,26,158,1330,...]); see A135922;
[1,2,6,26,158,1330,15414,245578,...] = BINOMIAL([1,1,3,13,83,749,...]);
[1,3,13,83,749,9363,160877,...] = BINOMIAL^2([1,1,5,33,317,4361,...]);
[1,5,33,317,4361,82789,2148561,...] = BINOMIAL^4([1,1,9,97,1433,...]);
[1,9,97,1433,30545,902601,...] = BINOMIAL^8([1,1,17,321,7601,252833,...]);
etc.
- J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
- I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Elsevier-North Holland, 1978, p. 698.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
- Alois P. Heinz, Table of n, a(n) for n = 0..100
- Geoffrey Critzer, Combinatorics of Vector Spaces over Finite Fields, Master's thesis, Emporia State University, 2018.
- S. Hitzemann and W. Hochstattler, On the combinatorics of Galois numbers, Discr. Math. 310 (2010) 3551-3557, Galois Numbers G_{n}^(2).
- Hsien-Kuei Hwang, Emma Yu Jin, and Michael J. Schlosser, Asymptotics and statistics on Fishburn Matrices: dimension distribution and a conjecture of Stoimenow, arXiv:2012.13570 [math.CO], 2020.
- Vjekoslav Kovač and Hrvoje Šikić, Characterizations of democratic systems of translates on locally compact abelian groups, arXiv:1709.01747 [math.FA], 2017.
- Kent E. Morrison, Integer Sequences and Matrices Over Finite Fields, Journal of Integer Sequences, Vol. 9 (2006), Article 06.2.1.
- D. Slepian, A class of binary signaling alphabets, Bell System Tech. J. 35 (1956), 203-234.
- D. Slepian, Some further theory of group codes, Bell System Tech. J. 39 1960 1219-1252.
- M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. (Annotated scanned copy)
- Index entries for sequences related to binary linear codes
-
I:=[1,2]; [n le 2 select I[n] else 2*Self(n-1)+(2^(n-2)-1)*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Aug 12 2014
-
gf:= m-> add(x^n/mul(1-2^k*x, k=0..n), n=0..m):
a:= n-> coeff(series(gf(n), x, n+1), x, n):
seq(a(n), n=0..20); # Alois P. Heinz, Apr 24 2012
# second Maple program:
b:= proc(n, m) option remember; `if`(n=0, 1,
2^m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..25); # Alois P. Heinz, Aug 08 2021
-
faq[n_, q_] = Product[(1-q^(1+k))/(1-q), {k, 0, n-1}]; qbin[n_, m_, q_] = faq[n, q]/(faq[m, q]*faq[n-m, q]); a[n_] := Sum[qbin[n, k, 2], {k, 0, n}]; a /@ Range[0, 19] (* Jean-François Alcover, Jul 21 2011 *)
Flatten[{1, RecurrenceTable[{a[n]==2*a[n-1]+(2^(n-1)-1)*a[n-2], a[0]==1, a[1]==2}, a, {n,1,15}]}] (* Vaclav Kotesovec, Aug 21 2013 *)
QP = QPochhammer; a[n_] := Sum[QP[2, 2, n]/(QP[2, 2, k]*QP[2, 2, n-k]), {k, 0, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Nov 23 2015 *)
Table[Sum[QBinomial[n, k, 2], {k, 0, n}], {n, 0, 19}] (* Ivan Neretin, Mar 28 2016 *)
-
a(n)=polcoeff(sum(k=0, n, x^k/prod(j=0, k, 1-2^j*x+x*O(x^n))), n) \\ Paul D. Hanna, Dec 06 2007
-
a(n,q=2)=sum(k=0,n,prod(i=1,n-k,(q^(i+k)-1)/(q^i-1))) \\ Paul D. Hanna, Nov 29 2008
A029552
Expansion of phi(x) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, 3, 4, 7, 13, 19, 29, 43, 62, 90, 126, 174, 239, 325, 435, 580, 769, 1007, 1313, 1702, 2191, 2808, 3580, 4539, 5735, 7216, 9036, 11278, 14028, 17383, 21474, 26448, 32471, 39759, 48550, 59123, 71829, 87053, 105249, 126975, 152858, 183623
Offset: 0
G.f. = 1 + 3*x + 4*x^2 + 7*x^3 + 13*x^4 + 19*x^5 + 29*x^6 + 43*x^7 + ...
G.f. = 1/q + 3*q^23 + 4*q^47 + 7*q^71 + 13*q^95 + 19*q^119 + 29*q^143 + ...
-
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, Oct 29 2013 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^2 / QPochhammer[ q, q^2], {q, 0, n}]; (* Michael Somos, Oct 29 2013 *)
-
{a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Sep 17 2004 */
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^3 * eta(x^4 + A)^2), n));} /* Michael Somos, Sep 17 2004 */
-
{a(n) = if( n<0, 0, polcoeff( sum(k=0, 2*n, prod(i=1, k, (1 -x^(2*n + 1-i)) / (1 - x^i))), n^2-n))}; /* Michael Somos, Sep 17 2004 */
A083479
The natural numbers with all terms of A033638 inserted.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 7, 7, 8, 9, 10, 10, 11, 12, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 21, 21, 22, 23, 24, 25, 26, 26, 27, 28, 29, 30, 31, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, 54, 55, 56, 57, 57
Offset: 0
There are three 1's, one from the natural numbers and two from A033638.
When viewed as an array the sequence begins:
0
1
1 1
2 2
3 3 4
5 5 6
7 7 8 9
10 10 11 12
13 13 14 15 16
17 17 18 19 20
21 21 22 23 24 25
26 26 27 28 29 30
...
-
a083479 n = a083479_list !! n
a083479_list = m [0..] a033638_list where
m xs'@(x:xs) ys'@(y:ys) | x <= y = x : m xs ys'
| otherwise = y : m xs' ys
-- Reinhard Zumkeller, Apr 06 2012
-
[n eq 0 select 0 else (n+2)-Ceiling(Sqrt(4*n)): n in [0..100]]; // G. C. Greubel, Feb 17 2024
-
Table[(n + 2) - Ceiling@ Sqrt[4 n] - 2 Boole[n == 0], {n, 0, 73}] (* Michael De Vlieger, Sep 05 2017 *)
-
a(n):=((n+2)-ceiling(sqrt(4*n))); /* Gregory R. Bryant, Apr 01 2013 */
-
from math import isqrt
def A083479(n): return n+1-isqrt((n<<2)-1) if n else 0 # Chai Wah Wu, Jul 28 2022
-
[(n+2)-ceil(sqrt(4*n)) -2*int(n==0) for n in range(101)] # G. C. Greubel, Feb 17 2024
A098613
Expansion of psi(x^2) / f(-x) in powers of x where psi(), f() are Ramanujan theta functions.
Original entry on oeis.org
1, 1, 3, 4, 7, 10, 17, 23, 35, 48, 69, 93, 131, 173, 236, 310, 413, 536, 704, 903, 1170, 1489, 1904, 2403, 3044, 3811, 4784, 5951, 7409, 9157, 11325, 13912, 17095, 20891, 25519, 31029, 37708, 45632, 55184, 66495, 80050, 96064, 115173, 137680, 164425, 195860
Offset: 0
G.f. = 1 + x + 3*x^2 + 4*x^3 + 7*x^4 + 10*x^5 + 17*x^6 + 23*x^7 + ...
G.f. = q^5 + q^29 + 3*q^53 + 4*q^77 + 7*q^101 + 10*q^125 + 17*q^149 + ...
-
a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, x] / (2 x^(1/4) QPochhammer[ x]), {x, 0, n}]; (* Michael Somos, Oct 29 2013 *)
a[ n_] := SeriesCoefficient[ 1 / (QPochhammer[ x, x^2] QPochhammer[ x^2, x^4]^2), {x, 0, n}]; (* Michael Somos, Oct 29 2013 *)
nmax = 40; CoefficientList[ Series[Product[(1 + x^k) * (1 + x^(2*k))^2, {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Sep 07 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x^2] QPochhammer[ -x^2, x^2]^3, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ x, -x]^2 QPochhammer[ -x, x]^3, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] QPochhammer[ -x^2, x^2]^2, {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
-
{a(n) = if( n<0, 0, polcoeff( sum(k=0, (sqrtint(4*n+1)-1)\2, x^(k^2+k)) / eta(x + x * O(x^n)), n))};
-
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)), n))};
-
{a(n) = if( n<0,0, polcoeff( sum(k=0, 2*n+1, prod(i=1, k, (1 - x^(2*n+2 - i)) / (1 - x^i))) / 2, n^2))};
A049597
Triangular array T(n,k) in which k-th column gives coefficients of sum of Gaussian polynomials [k,m] for m=0..k.
Original entry on oeis.org
1, 0, 2, 0, 0, 3, 0, 0, 1, 4, 0, 0, 0, 2, 5, 0, 0, 0, 2, 3, 6, 0, 0, 0, 0, 4, 4, 7, 0, 0, 0, 0, 3, 6, 5, 8, 0, 0, 0, 0, 1, 6, 8, 6, 9, 0, 0, 0, 0, 0, 6, 9, 10, 7, 10, 0, 0, 0, 0, 0, 2, 11, 12, 12, 8, 11, 0, 0, 0, 0, 0, 2, 9, 16, 15, 14, 9, 12, 0, 0, 0, 0, 0, 0, 7, 16, 21, 18, 16, 10, 13, 0, 0, 0, 0, 0, 0
Offset: 0
Table begins:
1
0 2
0 0 3
0 0 1 4
0 0 0 2 5
0 0 0 2 3 6
0 0 0 0 4 4 7
0 0 0 0 3 6 5 8
For k=4 the 5 polynomials have coefficients 1; 1 1 1 1; 1 1 2 1 1; 1 1 1 1; 1; which sum to 5 3 4 3 1, giving column 4.
- G. E. Andrews, Theory of Partitions, 1976, pages 240-243
The nonzero entries of the columns are the rows of
A083906.
-
a := n->sort(simplify(sum(product((1-q^i),i=n-r+1..n)/product((1-q^j),j=1..r), r=0..n))):T := proc(n,k) if k=n then n+1 elif k>n then 0 else coeff(a(k),q^(n-k)) fi end:seq(seq(T(n,k),k=0..n),n=0..21);
-
a [n_] := Sum[Product[1-q^i, {i, n-r+1, n}]/Product[1-q^j, {j, 1, r}], {r, 0, n}] // Simplify; T [n_, k_] := Which[k == n, n+1, k>n, 0, True, Coefficient[a[k], q^(n - k)]]; Table[Table[T[n, k], {k, 0, n}], {n, 0, 21}] // Flatten (* Jean-François Alcover, Feb 19 2015, after Maple *)
A105552
Irregular triangle T(n,k) read down columns: the number of compositions c of n with largest_part(c)+length(c)=k+1 in row n, column k.
Original entry on oeis.org
1, 2, 4, 1, 7, 5, 2, 11, 14, 12, 5, 1, 16, 30, 39, 32, 18, 7, 2, 22, 55, 95, 113, 101, 71, 41, 18, 6, 1, 29, 91, 195, 299, 357, 350, 292, 207, 126, 64, 27, 9, 2, 37, 140, 357, 664, 978, 1204, 1283, 1198, 992, 731, 482, 284, 148, 66, 25, 7, 1, 46, 204, 602, 1309, 2274, 3329, 4253
Offset: 1
The row n=7 starts from the partitions (weights in parentheses) 7 (1), 6+1 (2), 5+2 (2), 4+3 (2), 5+1+1 (3), 4+2+1 (6=3!/1!/1!/1!), 3+3+1 (3), 3+2+2 (3), 4+1+1+1 (4=4!/1!/3!), 3+2+1+1 (12 = 4!/1!/1!/2!), 2+2+2+1 (4), 3+1+1+1+1+1 (5), 2+2+1+1+1 (10=5!/2!/3!), 2+1+1+1+1 (6), 1+1+1+1+1+1 (1).
Then T(7,7) = 1+2+3+4+5+6+1 = 22 is the sum of the weights of partitions with largest part 7 and length 1, largest part 6 and length 2,... largest part 1 and length 7.
T(7,6) = 2+6+12+10 = 30 is the sum of the weights of the partitions with largest part 6 and length 1, largest part 5 and length 2, ..., largest part 1 and length 6.
T(7,5) = 2+3+3+4 = 12 collects all the partitions with largest part 5 and length 1 down to largest part 1 and length 5.
The array has A033638(k) nonzero entries per column, starting at n=1 as :
1
..2
....4
....1..7
.......5..11
.......2..14..16
..........12..30..22
...........5..39..55..29
...........1..32..95..91..37
..............18.113.195.140
...............7.101.299.357
...............2
-
A033638 := proc(n) ( (7+(-1)^n)/2 + n^2 )/4 ; end proc:
freq := proc(L,n) local a,p; a := 0 ; for p in L do if p = n then a := a+1 ; end if; end do: a ; end proc:
M3 := proc(L) local a,i; a := factorial(nops(L)) ; for i in convert(L,set) do a := a/factorial(freq(L,i)) ; end do: a ; end proc:
A105552 := proc(n,k) local p,a,l ; a := 0 ; for p in combinat[partition](n) do if max(op(p)) + nops(p) = k+1 then a := a+ M3(p); end if; end do ; a ; end proc:
for k from 1 to 15 do for n from k to k+A033638(k)+1 do T := A105552(n,k) ; if T >0 then printf("%d,", A105552(n,k)) ; end if; end do: printf("\n") ; end do: # R. J. Mathar, Jun 26 2010
# second Maple program:
b:= proc(n, k, p) option remember; `if`(n=0 and k=0, 1,
`if`(k<1, 0, add(b(n-j, k-1-max(p, j)+p, max(p, j)), j=1..n)))
end:
T:= k-> seq(b(n, k+1, 0), n=k..k+floor((k-1)^2/4)):
seq(T(k), k=1..10); # Alois P. Heinz, Jul 24 2013
-
b[n_, k_, p_] := b[n, k, p] = If[n == 0 && k == 0, 1, If[k < 1, 0, Sum[b[n - j, k - 1 - Max[p, j] + p, Max[p, j]], {j, 1, n}]]]; T[k_] := Table[b[n, k + 1, 0], {n, k, k + Floor[(k - 1)^2/4]}]; Table[T[k], {k, 1, 10}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
A330369
Triangle read by rows: T(n,k) (1 <= k <= n) is the total number of right angles of size k in all partitions of n.
Original entry on oeis.org
1, 0, 2, 0, 0, 3, 1, 0, 1, 4, 2, 0, 0, 2, 5, 3, 2, 0, 2, 3, 6, 4, 4, 0, 0, 4, 4, 7, 5, 6, 3, 0, 3, 6, 5, 8, 7, 8, 7, 0, 1, 6, 8, 6, 9, 9, 10, 11, 4, 0, 6, 9, 10, 7, 10, 13, 12, 15, 10, 0, 2, 11, 12, 12, 8, 11
Offset: 1
Triangle begins:
1;
0, 2;
0, 0, 3;
1, 0, 1, 4;
2, 0, 0, 2, 5;
3, 2, 0, 2, 3, 6;
4, 4, 0, 0, 4, 4, 7;
5, 6, 3, 0, 3, 6, 5, 8;
7, 8, 7, 0, 1, 6, 8, 6, 9;
9, 10, 11, 4, 0, 6, 9, 10, 7, 10;
13, 12, 15, 10, 0, 2, 11, 12, 12, 8, 11;
Figure 1 below shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. Figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2.
.
. Right-angles Right
Part Ferrers diagram Part diagram angle
_ _ _ _ _ _ _
7 * * * * * * * 7 | _ _ _ _ _ _| 14
6 * * * * * * 6 | | _ _ _ _| 8
3 * * * 3 | | | | 2
3 * * * 3 | | |_|
2 * * 2 | |_|
1 * 1 | |
1 * 1 | |
1 * 1 |_|
.
Figure 1. Figure 2.
.
For n = 8 the partitions of 8 and their respective right-angles diagrams are as follows:
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1|_|
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7
2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6
2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2
2| |_| 2| |_| 1| | 2|_|_| 1|_|
1| | 1|_| 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _
2| _|5 3| _ _|5 4| _ _ _|5
2| | |3 3| | _|3 4|_|_ _ _|3
2| | | 2|_|_|
2|_|_|
.
There are 5 right angles of size 1, so T(8,1) = 5.
There are 6 right angles of size 2, so T(8,2) = 6.
There are 3 right angles of size 3, so T(8,3) = 3.
There are no right angle of size 4, so T(8,4) = 0.
There are 3 right angles of size 5, so T(8,5) = 3.
There are 6 right angles of size 6, so T(8,6) = 6.
There are 5 right angles of size 7, so T(8,7) = 5.
There are 8 right angles of size 8, so T(8,8) = 8.
Hence the 8th row of triangle is [5, 6, 3, 0, 3, 6, 5, 8].
Note that the sum of the terms after the last zero is 3 + 6 + 5 + 8 = 22, equaling A000041(8) = 22, the number of partitions of 8.
- G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143 [Defines the right angles in the Ferrers graph of a partition. - N. J. A. Sloane, Nov 20 2020]
A129529
Triangle read by rows: T(n,k) is the number of ternary words of length n on {0,1,2} that have k inversions (n >= 0, k >= 0).
Original entry on oeis.org
1, 3, 6, 3, 10, 8, 8, 1, 15, 15, 21, 18, 9, 3, 21, 24, 39, 45, 48, 30, 24, 9, 3, 28, 35, 62, 82, 107, 108, 101, 81, 62, 37, 17, 8, 1, 36, 48, 90, 129, 186, 222, 264, 252, 255, 219, 183, 126, 90, 48, 27, 9, 3, 45, 63, 123, 186, 285, 372, 492, 561, 624, 648, 651, 597, 537, 435, 336, 249, 165, 99, 54, 27, 9, 3
Offset: 0
T(3,2) = 8 because we have 100, 110, 120, 200, 201, 211, 220 and 221.
Triangle starts:
1;
3;
6, 3;
10, 8, 8, 1;
15, 15, 21, 18, 9, 3;
21, 24, 39, 45, 48, 30, 24, 9, 3;
...
- M. Bona, Combinatorics of Permutations, Chapman & Hall/CRC, Boca Raton, FL, 2004, pp. 57-61.
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
-
for n from 0 to 40 do br[n]:=sum(q^i,i=0..n-1) od: for n from 0 to 40 do f[n]:=simplify(product(br[j],j=1..n)) od: mbr:=(n,a,b,c)->simplify(f[n]/f[a]/f[b]/f[c]): for n from 0 to 9 do G[n]:=sort(simplify(sum(sum(mbr(n,a,b,n-a-b),b=0..n-a),a=0..n))) od: for n from 0 to 9 do seq(coeff(G[n],q,j),j=0..floor(n^2/3)) od; # yields sequence in triangular form
# second Maple program:
b:= proc(n, l) option remember; `if`(n=0, 1, add(expand(b(n-1, `if`(j<3,
subsop(j=l[j]+1, l), l)))*x^([0, l[1], l[1]+l[2]][j]), j=1..3))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, [0$2])):
seq(T(n), n=0..10); # Alois P. Heinz, Feb 12 2025
-
b[n_, l_] := b[n, l] =
If[n == 0, 1, Sum[Expand[b[n-1, If[j < 3, ReplacePart[l, j -> l[[j]]+1], l]]]*x^({0, l[[1]], l[[1]]+l[[2]]}[[j]]), {j, 1, 3}]];
T[n_] := With[{p = b[n, {0, 0}]}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]];
Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Apr 13 2025, after Alois P. Heinz *)
A129531
Triangle read by rows: T(n,k) is the number of 4-ary words of length n on {0,1,2,3} having k inversions (n >= 0, k >= 0).
Original entry on oeis.org
1, 4, 10, 6, 20, 20, 20, 4, 35, 45, 65, 60, 35, 15, 1, 56, 84, 144, 180, 200, 152, 120, 60, 24, 4, 84, 140, 266, 386, 526, 584, 590, 524, 424, 290, 164, 86, 26, 6, 120, 216, 440, 700, 1064, 1384, 1720, 1844, 1940, 1820, 1616, 1272, 956, 620, 380, 184, 80, 24, 4
Offset: 0
T(2,1)=6 because we have 10, 20, 30, 21, 31 and 32.
Triangle starts:
1;
4;
10, 6;
20, 20, 20, 4;
35, 45, 65, 60, 35, 15, 1;
56, 84, 144, 180, 200, 152, 120, 60, 24, 4;
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976.
- M. Bona, Combinatorics of Permutations, Chapman & Hall/CRC, Boca Raton, FL, 2004, pp. 57-61.
-
for n from 0 to 12 do br[n]:=sum(q^i,i=0..n-1) od: for n from 0 to 12 do f[n]:=simplify(product(br[j],j=1..n)) od: mbr:=(n,a,b,c,d)->simplify(f[n]/f[a]/f[b]/f[c]/f[d]): for n from 0 to 8 do G[n]:=sort(simplify(sum(sum(sum(mbr(n,a,b,c,n-a-b-c),c=0..n-a-b),b=0..n-a),a=0..n))) od: for n from 0 to 8 do seq(coeff(G[n],q,j),j=0..ceil((3*n^2-4)/8)) od; # yields sequence in triangular form
Showing 1-10 of 12 results.
Comments