cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001936 Expansion of q^(-1/4) * (eta(q^4) / eta(q))^2 in powers of q.

Original entry on oeis.org

1, 2, 5, 10, 18, 32, 55, 90, 144, 226, 346, 522, 777, 1138, 1648, 2362, 3348, 4704, 6554, 9056, 12425, 16932, 22922, 30848, 41282, 54946, 72768, 95914, 125842, 164402, 213901, 277204, 357904, 460448, 590330, 754368, 960948, 1220370, 1545306
Offset: 0

Views

Author

Keywords

Comments

The Cayley reference is actually to A079006. - Michael Somos, Feb 24 2011
In the math overflow link is a conjecture that a(n) == a(9*n + 2) (mod 4).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Number of 4-regular bipartitions of n. - N. J. A. Sloane, Oct 20 2019
The g.f. in the form A(x) = Sum_{k >= 0} x^(k*(k+1)) / (1 + 2*Sum_{k >= 1} (-1)^k * x^(k^2)) == Sum_{k >= 0} x^(k*(k+1)) (mod 2). It follows that a(n) is odd iff n = k*(k + 1) for some nonnegative integer k. - Peter Bala, Jan 04 2025

Examples

			G.f. = 1 + 2*x + 5*x^2 + 10*x^3 + 18*x^4 + 32*x^5 + 55*x^6 + 90*x^7 + 144*x^8 + ...
G.f. = q + 2*q^5 + 5*q^9 + 10*q^13 + 18*q^17 + 32*q^21 + 55*q^25 + 90*q^29 + ...
		

References

  • A. Cayley, A memoir on the transformation of elliptic functions, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 9, p. 128.
  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; Eq. (34.3).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Number of r-regular bipartitions of n for r = 2,3,4,5,6: A022567, A328547, A001936, A263002, A328548, A333374.

Programs

  • Maple
    with(numtheory): etr:= proc(p) local b; b:=proc(n) option remember; local d,j; if n=0 then 1 else add(add(d*p(d), d=divisors(j)) *b(n-j), j=1..n)/n fi end end: a:= etr(n-> [2,2,2,0] [modp(n-1,4)+1]): seq(a(n), n=0..40); # Alois P. Heinz, Sep 08 2008
    f:=(k,M) -> mul(1-q^(k*j),j=1..M); LRBP := (L,M) -> (f(L,M)/f(1,M))^2; S := L -> seriestolist(series(LRBP(L,80),q,60)); S(4); # N. J. A. Sloane, Oct 20 2019
  • Mathematica
    m = 38; CoefficientList[ Series[ Product[ (1 - x^(4*k))/(1 - x^k), {k, 1, m}]^2 , {x, 0, m}], x] (* Jean-François Alcover, Sep 02 2011, after g.f. *)
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, x] / EllipticTheta[ 4, 0, x]) / (2 x^(1/4)), {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (Product[ 1 - x^k, {k, 4, n, 4}] / Product[ 1 - x^k, {k, n}])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ x^4] / QPochhammer[ x])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -x, x] QPochhammer[ -x^2, x^2])^2, {x, 0, n}]; (* Michael Somos, May 16 2015 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (eta(x^4 + x * O(x^n)) / eta(x + x * O(x^n)))^2, n))};
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( prod(k=1, n, 1 / if(k%4, 1 - x^k, 1), 1 + x * O(x^n))^2, n))};

Formula

G.f.: Product ( 1 - x^k )^(-c(k)); c(k) = 2, 2, 2, 0, 2, 2, 2, 0, ....
Convolution square of A001935. A079006(n) = (-1)^n a(n).
Expansion of q^(-1/4) * (1/2) * (k / k')^(1/2) in powers of q.
Euler transform of period 4 sequence [ 2, 2, 2, 0, ...].
Given g.f. A(x), then B(q) = (q * A(q^4))^4 satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (1 + 16*u) * (1 + 16*v) * v - u^2. - Michael Somos, Jul 09 2005
Given g.f. A(x), then B(q) = q * A(q^4) satisfies 0 = f(B(q), B(q^3)) where f(u, v) = (u^2 + v^2)^2 - u*v * (1 + 4*u*v)^2. - Michael Somos, Jul 09 2005
G.f.: (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^2 = (Product_{k>0} (1 - x^(4*k)) / (1 - x^k))^2.
Equals A000009 convolved with A098613. - Gary W. Adamson, Mar 24 2011
a(9*n + 2) = a(n) + 4 * A210656(3*n). - Michael Somos, Apr 02 2012
Convolution inverse is A082304. - Michael Somos, May 16 2015
G.f. is a period 1 Fourier series which satisfies f(-1 / (64 t)) = (1/4) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A082304. - Michael Somos, May 16 2015
Expansion of f(-x^4)^2 / f(-x)^2 = psi(x^2) / phi(-x) = psi(-x)^2 / phi(-x)^2 = psi(x)^2 / phi(-x^2)^2 = psi(x^2)^2 / psi(-x)^2 = chi(x)^2 / chi(-x^2)^4 = 1 / (chi(x)^2 * chi(-x)^4) = 1 / (chi(-x)^2 * chi(-x^2)^2) in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, May 16 2015
a(n) ~ exp(Pi*sqrt(n)) / (8*sqrt(2)*n^(3/4)). - Vaclav Kotesovec, Aug 18 2015
G.f.: A(x) = Sum_{n >= 0} x^(n*(n+1)) / Sum_{n = -oo..oo} (-1)^n*x^(n^2). - Peter Bala, Feb 19 2021

A083906 Table read by rows: T(n, k) is the number of length n binary words with exactly k inversions.

Original entry on oeis.org

1, 2, 3, 1, 4, 2, 2, 5, 3, 4, 3, 1, 6, 4, 6, 6, 6, 2, 2, 7, 5, 8, 9, 11, 9, 7, 4, 3, 1, 8, 6, 10, 12, 16, 16, 18, 12, 12, 8, 6, 2, 2, 9, 7, 12, 15, 21, 23, 29, 27, 26, 23, 21, 15, 13, 7, 4, 3, 1, 10, 8, 14, 18, 26, 30, 40, 42, 48, 44, 46, 40, 40, 30, 26, 18, 14, 8, 6, 2, 2
Offset: 0

Views

Author

Alford Arnold, Jun 19 2003

Keywords

Comments

There are A033638(n) values in the n-th row, compliant with the order of the polynomial.
In the example for n=6 detailed below, the orders of [6, k]_q are 1, 6, 9, 10, 9, 6, 1 for k = 0..6,
the maximum order 10 defining the row length.
Note that 1 6 9 10 9 6 1 and related distributions are antidiagonals of A077028.
A083480 is a variation illustrating a relationship with numeric partitions, A000041.
The rows are formed by the nonzero entries of the columns of A049597.
If n is even the n-th row converges to n+1, n-1, n-4, ..., 19, 13, 7, 4, 3, 1 which is A029552 reversed, and if n is odd the sequence is twice A098613. - Michael Somos, Jun 25 2017

Examples

			When viewed as an array with A033638(r) entries per row, the table begins:
. 1 ............... : 1
. 2 ............... : 2
. 3 1 ............. : 3 + q = (1) + (1+q) + (1)
. 4 2 2 ........... : 4 + 2q + 2q^2 = 1 + (1+q+q^2) + (1+q+q^2) + 1
. 5 3 4 3 1 ....... : 5 + 3q + 4q^2 + 3q^3 + q^4
. 6 4 6 6 6 2 2
. 7 5 8 9 11 9 7 4 3 1
. 8 6 10 12 16 16 18 12 12 8 6 2 2
. 9 7 12 15 21 23 29 27 26 23 21 15 13 7 4 3 1
...
The second but last row is from the sum over 7 q-polynomials coefficients:
. 1 ....... : 1 = [6,0]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,1]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,2]_q
. 1 1 2 3 3 3 3 2 1 1 ....... : 1+q+2q^2+3q^3+3q^4+3q^5+3q^6+2q^7+q^8+q^9 = [6,3]_q
. 1 1 2 2 3 2 2 1 1 ....... : 1+q+2q^2+2q^3+3q^4+2q^5+2q^6+q^7+q^8 = [6,4]_q
. 1 1 1 1 1 1 ....... : 1+q+q^2+q^3+q^4+q^5 = [6,5]_q
. 1 ....... : 1 = [6,6]_q
		

References

  • George E. Andrews, 'Theory of Partitions', 1976, page 242.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 100);
    qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
    A083906:= func< n,k | Coefficient(R!((&+[qBinom(n,k,x): k in [0..n]]) ), k) >;
    [A083906(n,k): k in [0..Floor(n^2/4)], n in [0..12]]; // G. C. Greubel, Feb 13 2024
    
  • Maple
    QBinomial := proc(n,m,q) local i ; factor( mul((1-q^(n-i))/(1-q^(i+1)),i=0..m-1) ) ; expand(%) ; end:
    A083906 := proc(n,k) add( QBinomial(n,m,q),m=0..n ) ; coeftayl(%,q=0,k) ; end:
    for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d,",A083906(n,k)) ; od: od: # R. J. Mathar, May 28 2009
    T := proc(n, k) if n < 0 or k < 0 or k > floor(n^2/4) then return 0 fi;
    if n < 2 then return n + 1 fi; 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) end:
    seq(print(seq(T(n, k), k = 0..floor((n/2)^2))), n = 0..8);  # Peter Luschny, Feb 16 2024
  • Mathematica
    Table[CoefficientList[Total[Table[FunctionExpand[QBinomial[n, k, q]], {k, 0, n}]],q], {n, 0, 10}] // Grid (* Geoffrey Critzer, May 14 2017 *)
  • PARI
    {T(n, k) = polcoeff(sum(m=0, n, prod(k=0, m-1, (x^n - x^k) / (x^m - x^k))), k)}; /* Michael Somos, Jun 25 2017 */
    
  • SageMath
    def T(n,k): # T = A083906
        if k<0 or k> (n^2//4): return 0
        elif n<2 : return n+1
        else: return 2*T(n-1, k) - T(n-2, k) + T(n-2, k-n+1)
    flatten([[T(n,k) for k in range(int(n^2//4)+1)] for n in range(13)]) # G. C. Greubel, Feb 13 2024

Formula

T(n, k) is the coefficient [q^k] of the Sum_{m=0..n} [n, m]_q over q-Binomial coefficients.
Row sums: Sum_{k=0..floor(n^2/4)} T(n,k) = 2^n.
For n >= k, T(n+1,k) = T(n, k) + A000041(k). - Geoffrey Critzer, Feb 12 2021
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A060546(n). - G. C. Greubel, Feb 13 2024
From Mikhail Kurkov, Feb 14 2024: (Start)
T(n, k) = 2*T(n-1, k) - T(n-2, k) + T(n-2, k - n + 1) for n >= 2 and 0 <= k <= floor(n^2/4).
Sum_{i=0..n} T(n-i, i) = A000041(n+1). Note that upper limit of the summation can be reduced to A083479(n) = (n+2) - ceiling(sqrt(4*n)).
Both results were proved (see MathOverflow link for details). (End)
From G. C. Greubel, Feb 17 2024: (Start)
T(n, floor(n^2/4)) = A000034(n).
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A016116(n+1).
Sum_{k=0..(n + 2) - ceiling(sqrt(4*n))} (-1)^k*T(n - k, k) = (-1)^n*A000025(n+1) = -A260460(n+1). (End)

Extensions

Edited by R. J. Mathar, May 28 2009
New name using a comment from Geoffrey Critzer by Peter Luschny, Feb 17 2024

A029552 Expansion of phi(x) / f(-x) in powers of x where phi(), f() are Ramanujan theta functions.

Original entry on oeis.org

1, 3, 4, 7, 13, 19, 29, 43, 62, 90, 126, 174, 239, 325, 435, 580, 769, 1007, 1313, 1702, 2191, 2808, 3580, 4539, 5735, 7216, 9036, 11278, 14028, 17383, 21474, 26448, 32471, 39759, 48550, 59123, 71829, 87053, 105249, 126975, 152858, 183623
Offset: 0

Views

Author

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 + 3*x + 4*x^2 + 7*x^3 + 13*x^4 + 19*x^5 + 29*x^6 + 43*x^7 + ...
G.f. = 1/q + 3*q^23 + 4*q^47 + 7*q^71 + 13*q^95 + 19*q^119 + 29*q^143 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, Oct 29 2013 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^2 / QPochhammer[ q, q^2], {q, 0, n}]; (* Michael Somos, Oct 29 2013 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=1, sqrtint(n), 2*x^k^2, 1) / eta(x + x * O(x^n)), n))}; /* Michael Somos, Sep 17 2004 */
    
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 / (eta(x + A)^3 * eta(x^4 + A)^2), n));} /* Michael Somos, Sep 17 2004 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( sum(k=0, 2*n, prod(i=1, k, (1 -x^(2*n + 1-i)) / (1 - x^i))), n^2-n))}; /* Michael Somos, Sep 17 2004 */

Formula

Expansion of q^(1/24) * eta(q^2)^5 /(eta(q)^3 * eta(q^4)^2) in powers of q. - Michael Somos, Sep 17 2004
Euler transform of period 4 sequence [3, -2, 3, 0, ...]. - Michael Somos, Sep 17 2004
G.f. A(x) is the limit of x^(n^2) P_{2n}(1/x) where P_n(q) = Sum_{k=0..n} C(n,k;q) and C(n,k;q) is q-binomial coefficients. See A083906 for P_n. - Michael Somos, Sep 17 2004
G.f.: (1 + 2 * Sum_{k>0} x^(k^2)) / (Product_{k>0} (1 - x^k)).
a(n) ~ exp(sqrt(2*n/3)*Pi) / (2^(7/4)*3^(1/4)*n^(3/4)). - Vaclav Kotesovec, May 01 2017
Expansion of chi(x)^3/chi(-x^2) = chi(x)^2/chi(-x) = chi(-x^2)^2/chi(-x)^3 in powers of x where chi() is a Ramanujan theta function. - Michael Somos, Apr 24 2023

A143161 Expansion of chi(-x)^2 * chi(-x^2) in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 0, 0, 3, -2, 0, 0, 4, -6, 0, 0, 7, -8, 0, 0, 13, -14, 0, 0, 19, -20, 0, 0, 29, -34, 0, 0, 43, -46, 0, 0, 62, -70, 0, 0, 90, -96, 0, 0, 126, -138, 0, 0, 174, -186, 0, 0, 239, -262, 0, 0, 325, -346, 0, 0, 435, -472, 0, 0, 580, -620, 0, 0, 769, -826, 0, 0
Offset: 0

Views

Author

Michael Somos, Jul 27 2008

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 1 - 2*x + 3*x^4 - 2*x^5 + 4*x^8 - 6*x^9 + 7*x^12 - 8*x^13 + 13*x^16 + ...
G.f. = 1/q - 2*q^5 + 3*q^23 - 2*q^29 + 4*q^47 - 6*q^53 + 7*q^71 - 8*q^77 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x, x^2]^2 QPochhammer[ x^2, x^4], {x, 0, n}]; (* Michael Somos, Sep 07 2015 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^2 / (eta(x^2 + A) * eta(x^4 + A)), n))};

Formula

Expansion of q^(1/6) * eta(q)^2 / (eta(q^2) * eta(q^4)) in powers of q.
Euler transform of period 4 sequence [ -2, -1, -2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (576 t)) = 8^(1/2) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A098613. - Michael Somos, Sep 07 2015
a(4*n + 2) = a(4*n + 3) = 0.
G.f.: (Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k)))^-1.
a(4*n) = A029552(n). a(4*n + 1) = -2 * A098613(n).

A224916 Expansion of chi(x)^2 / chi(-x^2)^6 in powers of x where chi() is a Ramanujan theta function.

Original entry on oeis.org

1, 2, 7, 14, 31, 58, 112, 196, 347, 580, 966, 1554, 2485, 3872, 5993, 9102, 13719, 20384, 30068, 43836, 63481, 91048, 129763, 183448, 257839, 359862, 499583, 689312, 946416, 1292388, 1756838, 2376598, 3201557, 4293942, 5736736, 7633702, 10121408, 13370634
Offset: 0

Views

Author

Michael Somos, Apr 19 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			1 + 2*x + 7*x^2 + 14*x^3 + 31*x^4 + 58*x^5 + 112*x^6 + 196*x^7 + 347*x^8 + ...
q^5 + 2*q^17 + 7*q^29 + 14*q^41 + 31*q^53 + 58*q^65 + 112*q^77 + 196*q^89 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ EllipticTheta[ 2, 0, q]^2 / (4 q^(1/2) QPochhammer[q]^2), {q, 0, n}]
    a[ n_] := SeriesCoefficient[ 1 / QPochhammer[ q^2, q^4]^4 / QPochhammer[ q, q^2]^2, {q, 0, n}]
    a[ n_] := SeriesCoefficient[ (QPochhammer[ -q, q^2]^4 - QPochhammer[ q, q^2]^4)/ 8, {q, 0, 2 n + 1}]
  • PARI
    {a(n) = local(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^4 + A)^2 / (eta(x + A) * eta(x^2 + A)))^2, n))}

Formula

Expansion of q^(-5/12) * (eta(q^4)^2 / (eta(q) * eta(q^2)))^2 in powers of q.
Expansion of psi(x^2)^2 / f(-x)^2 = 1 / (chi(-x)^2 * chi(-x^2)^4) = 1 / (chi(x)^4 * chi(-x)^6 ) in powers of x where psi(), chi(), f() are Ramanujan theta functions.
Expansion of (chi(x)^4 - chi(-x)^4) / (8*x) in powers of x^2 where chi() is a Ramanujan theta function.
Euler transform of period 4 sequence [ 2, 4, 2, 0, ...].
G.f.: Product_{k>0} (1 + x^k)^2 * (1 + x^(2*k))^4.
G.f.: (Sum_{k>0} x^(k^2 - k)) / (Product_{k>0} (1 - x^k))^2. - Michael Somos, Jul 04 2013
a(n) = A112160(2*n + 1) / 4.
Convolution square of A098613. - Michael Somos, Jul 04 2013
a(n) ~ exp(2*Pi*sqrt(n/3)) / (16 * 3^(1/4) * n^(3/4)). - Vaclav Kotesovec, Sep 07 2015

A346848 Number of conjugacy classes of the symplectic group Sp(2n, 2) over the field with 2 elements.

Original entry on oeis.org

1, 3, 11, 30, 81, 198, 477, 1089, 2451, 5358, 11567, 24537, 51577, 107205, 221378, 453900, 926395, 1882152, 3812232, 7699191, 15518112, 31220991, 62733296, 125911851, 252516626, 506082933, 1013780968, 2029989807, 4063678159, 8132877129, 16274093175
Offset: 0

Views

Author

Jan Kristian Haugland, Aug 06 2021

Keywords

Comments

Sp(2n, 2) is isomorphic to the orthogonal group O(2n+1, 2) over the field with 2 elements, and is a simple and complete group for n>=3.

Examples

			a(2)=11, and Sp(4, 2) is isomorphic to the symmetric group S_6 which has 11 conjugacy classes.
		

Crossrefs

Discrete convolution of A070933 and A098613. A003923 gives the order of the group.

A385672 Irregular triangle read by rows: T(n, k) is the number of n-step walks on the square lattice having algebraic area k; n >= 0, 0 <= k <= floor(n^2/4).

Original entry on oeis.org

1, 4, 12, 2, 40, 8, 4, 124, 42, 16, 6, 2, 416, 160, 92, 28, 16, 4, 4, 1348, 678, 362, 174, 88, 34, 22, 8, 6, 2, 4624, 2548, 1624, 756, 460, 200, 156, 56, 40, 20, 12, 4, 4, 15632, 10062, 6336, 3586, 2110, 1106, 742, 388, 278, 152, 82, 46, 34, 14, 8, 6, 2
Offset: 0

Views

Author

Andrei Zabolotskii, Aug 04 2025

Keywords

Comments

Rows can be extended to negative k with T(n, -k) = T(n, k). Sums of such extended rows give 4^n.
The algebraic area is Integral y dx over the walk, which equals (Sum_{steps right} y) - (Sum_{steps left} y).

Examples

			The triangle begins:
     1
     4
    12,   2
    40,   8,   4
   124,  42,  16,   6,  2
   416, 160,  92,  28, 16,  4,  4
  1348, 678, 362, 174, 88, 34, 22, 8, 6, 2
   ...
T(3, 1) = 8: RUR (right, up, right), LUR, RDL, LDL, URU, URD, DLU, DLD.
		

Crossrefs

Row lengths are A033638 = A002620 + 1.
A352838 is an analog that gives the number of closed walks.

Programs

  • Python
    d = [{((0, 0), 0): 1}]
    for _ in range(10):
        nd = {}
        for key, nw in d[-1].items():
            pos, ar = key
            x, y = pos
            for key in [
                ((x+1, y), ar + y),
                ((x-1, y), ar - y),
                ((x, y+1), ar),
                ((x, y-1), ar)
                ]:
                if key in nd:
                    nd[key] += nw
                else:
                    nd[key] = nw
        d.append(nd)
    t = []
    for nd in d:
        a = [0] * (max(ar for _, ar in nd) + 1)
        for key, nw in nd.items():
            _, ar = key
            if ar >= 0:
                a[ar] += nw
        t.append(a)
    print(t)

Formula

It appears that T(2*n, n^2 - k) = 2 * A029552(k) for k < n and T(2*n+1, n^2+n - k) = 4 * A098613(k) for k < n.
Showing 1-7 of 7 results.