A208478
Triangle read by rows: T(n,k) = number of partitions of n with positive k-th rank.
Original entry on oeis.org
0, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 3, 2, 1, 5, 2, 4, 4, 2, 1, 6, 3, 5, 6, 4, 2, 1, 10, 5, 7, 9, 7, 4, 2, 1, 13, 7, 9, 11, 11, 7, 4, 2, 1, 19, 11, 12, 15, 16, 12, 7, 4, 2, 1, 25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1, 35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1
Offset: 1
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are
----------------------------------------------------------
Partitions First Second Third Fourth
of 4 rank rank rank rank
----------------------------------------------------------
4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1
3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0
2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0
2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0
1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1
----------------------------------------------------------
The number of partitions of 4 with positive k-th ranks are 2, 1, 2, 1 so row 4 lists 2, 1, 2, 1.
Triangle begins:
0;
1, 1;
1, 1, 1;
2, 1, 2, 1;
3, 1, 3, 2, 1;
5, 2, 4, 4, 2, 1;
6, 3, 5, 6, 4, 2, 1;
10, 5, 7, 9, 7, 4, 2, 1;
13, 7, 9, 11, 11, 7, 4, 2, 1;
19, 11, 12, 15, 16, 12, 7, 4, 2, 1;
25, 16, 15, 19, 22, 18, 12, 7, 4, 2, 1;
35, 24, 20, 26, 29, 27, 19, 12, 7, 4, 2, 1;
...
Cf.
A063995,
A105805,
A181187,
A194547,
A194549,
A195822,
A208482,
A208483,
A209616,
A330368,
A330369,
A330370.
A330375
Irregular triangle read by rows: T(n,k) (n>=1) is the sum of the lengths of all k-th right angles in all partitions of n.
Original entry on oeis.org
1, 4, 9, 19, 1, 33, 2, 59, 7, 93, 12, 150, 26, 226, 43, 1, 342, 76, 2
Offset: 1
Triangle begins:
1;
4;
9;
19, 1;
33, 2;
59, 7;
93, 12;
150, 26;
226, 43, 1;
342, 76, 2;
...
Figure 1 shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. Figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2.
.
. Right-angles Right
Part Ferrers diagram Part diagram angle
_ _ _ _ _ _ _
7 * * * * * * * 7 | _ _ _ _ _ _| 14
6 * * * * * * 6 | | _ _ _ _| 8
3 * * * 3 | | | | 2
3 * * * 3 | | |_|
2 * * 2 | |_|
1 * 1 | |
1 * 1 | |
1 * 1 |_|
.
Figure 1. Figure 2.
.
For n = 8 the partitions of 8 and their respective right-angles diagrams are as follows:
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1|_|
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7
2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6
2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2
2| |_| 2| |_| 1| | 2|_|_| 1|_|
1| | 1|_| 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _
2| _|5 3| _ _|5 4| _ _ _|5
2| | |3 3| | _|3 4|_|_ _ _|3
2| | | 2|_|_|
2|_|_|
.
The sum of the lengths of the first right angles of all partitions of 8 is 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 7 + 7 + 7 + 7 + 7 + 6 + 6 + 6 + 6 + 6 + 6 + 5 + 5 + 5 = 150, so T(8,1) = 150.
The sum of the second right angles of all partitions of 8 is 1 + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 + 3 + 3 + 3 = 26, so T(8,2) = 26.
A330378
a(n) is the sum over all partitions of n of the number of right angles that are not the largest right angle.
Original entry on oeis.org
0, 0, 0, 1, 2, 5, 8, 14, 22, 34, 50, 75, 106, 151, 210, 291, 394, 535, 712, 949, 1246, 1634, 2118, 2745, 3520, 4508, 5728, 7266, 9152, 11512, 14390, 17959, 22298, 27634, 34094, 41993, 51510, 63075, 76966, 93752, 113834, 137992, 166788, 201269, 242248, 291102, 348976, 417727
Offset: 1
For n = 8 the partitions of 8 and their respective right-angles diagrams are as follows:
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1|_|
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7
2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6
2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2
2| |_| 2| |_| 1| | 2|_|_| 1|_|
1| | 1|_| 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _
2| _|5 3| _ _|5 4| _ _ _|5
2| | |3 3| | _|3 4|_|_ _ _|3
2| | | 2|_|_|
2|_|_|
.
In total there are 14 right angles that are not the largest right angle of the partitions of 8, so a(8) = 14.
- G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143.
A330379
Triangle read by rows: T(n,k) (1 <= k <= n) is the sum of the sizes of all right angles of size k of all partitions of n.
Original entry on oeis.org
1, 0, 4, 0, 0, 9, 1, 0, 3, 16, 2, 0, 0, 8, 25, 3, 4, 0, 8, 15, 36, 4, 8, 0, 0, 20, 24, 49, 5, 12, 9, 0, 15, 36, 35, 64, 7, 16, 21, 0, 5, 36, 56, 48, 81, 9, 20, 33, 16, 0, 36, 63, 80, 63, 100, 13, 24, 45, 40, 0, 12, 77, 96, 108, 80, 121
Offset: 1
Triangle begins:
1;
0, 4;
0, 0, 9;
1, 0, 3, 16;
2, 0, 0, 8, 25;
3, 4, 0, 8, 15, 36;
4, 8, 0, 0, 20, 24, 49;
5, 12, 9, 0, 15, 36, 35, 64;
7, 16, 21, 0, 5, 36, 56, 48, 81;
9, 20, 33, 16, 0, 36, 63, 80, 63, 100;
13, 24, 45, 40, 0, 12, 77, 96, 108, 80, 121;
...
Below the figure 1 shows the Ferrers diagram of the partition of 24: [7, 6, 3, 3, 2, 1, 1, 1]. The figure 2 shows the right-angles diagram of the same partition. Note that in this last diagram we can see the size of the three right angles as follows: the first right angle has size 14 because it contains 14 square cells, the second right angle has size 8 and the third right angle has size 2.
.
. Right-angles Right
Part Ferrers diagram Part diagram angle
_ _ _ _ _ _ _
7 * * * * * * * 7 | _ _ _ _ _ _| 14
6 * * * * * * 6 | | _ _ _ _| 8
3 * * * 3 | | | | 2
3 * * * 3 | | |_|
2 * * 2 | |_|
1 * 1 | |
1 * 1 | |
1 * 1 |_|
.
Figure 1. Figure 2.
.
For n = 8 the partitions of 8 and their respective right-angles diagrams look as shown below:
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1| |8 2| _|8 3| _ _|8 4| _ _ _|8 5| _ _ _ _|8
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1| |
1| | 1| | 1| | 1| | 1|_|
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
6| _ _ _ _ _|8 7| _ _ _ _ _ _|8 8|_ _ _ _ _ _ _ _|8
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|7 3| _ _|7 4| _ _ _|7 5| _ _ _ _|7 6| _ _ _ _ _|7
2| |_|1 2| |_| 1 2| |_| 1 2| |_| 1 2|_|_| 1
1| | 1| | 1| | 1|_|
1| | 1| | 1|_|
1| | 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
2| _|6 3| _ _|6 3| _ _|6 4| _ _ _|6 4| _ _ _|6 5| _ _ _ _|6
2| | |2 2| | | 2 3| |_ _|2 2| | | 2 3| |_ _| 2 3|_|_ _| 2
2| |_| 2| |_| 1| | 2|_|_| 1|_|
1| | 1|_| 1|_|
1|_|
.
_ _ _ _ _ _ _ _ _
2| _|5 3| _ _|5 4| _ _ _|5
2| | |3 3| | _|3 4|_|_ _ _|3
2| | | 2|_|_|
2|_|_|
.
There are 5 right angles of size 1, so T(8,1) = 5*1 = 5.
There are 6 right angles of size 2, so T(8,2) = 6*2 = 12.
There are 3 right angles of size 3, so T(8,3) = 3*3 = 9.
There are no right angle of size 4, so T(8,4) = 0*4 = 0.
There are 3 right angles of size 5, so T(8,5) = 3*5 = 15.
There are 6 right angles of size 6, so T(8,6) = 6*6 = 36.
There are 5 right angles of size 7, so T(8,7) = 5*7 = 35.
There are 8 right angles of size 8, so T(8,8) = 8*8 = 64.
Hence the 8th row of triangle is [5, 12, 9, 0, 15, 36, 35, 64].
The row sum gives A066186(8) = 8*A000041(8) = 8*22 = 176.
- G. E. Andrews, Theory of Partitions, Cambridge University Press, 1984, page 143.
Row sums of the terms that are after last zero give
A179862.
A330376
Irregular triangle read by rows: T(n,k) is the total number of parts in all partitions of n with Durfee square of size k (n>=1; 1<=k<=floor(sqrt(n))).
Original entry on oeis.org
1, 3, 6, 10, 2, 15, 5, 21, 14, 28, 26, 36, 50, 45, 80, 3, 55, 130, 7, 66, 190, 19, 78, 280, 41, 91, 385, 80, 105, 532, 143, 120, 700, 248, 136, 924, 399, 4, 153, 1176, 627, 9, 171, 1500, 949, 24, 190, 1860, 1397, 51, 210, 2310, 2003, 107, 231, 2805, 2823, 193
Offset: 1
Triangle begins:
1;
3;
6;
10, 2;
15, 5;
21, 14;
28, 26;
36, 50;
45, 80, 3;
Cf.
A114089,
A115721,
A115722,
A115994,
A116858,
A118198,
A208474,
A330369,
A330640,
A330641,
A330642,
A330643.
-
\\ by enumeration over partitions.
ds(p)={for(i=2, #p, if(p[#p+1-i]Andrew Howroyd, Feb 02 2022
-
\\ by generating function.
P(n,k,y)={1/prod(j=1, k, 1 - y*x^j + O(x*x^n))}
T(n,k)={my(r=n-k^2); if(r<0, 0, subst(deriv(polcoef(y^k*P(r,k,1)*P(r,k,y), r)), y, 1))}
{ for(n=1, 10, print(vector(sqrtint(n), k, T(n,k)))) } \\ Andrew Howroyd, Feb 02 2022
Showing 1-5 of 5 results.
Comments