cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049612 a(n) = T(n,3), array T as in A049600.

Original entry on oeis.org

0, 1, 5, 19, 63, 192, 552, 1520, 4048, 10496, 26624, 66304, 162560, 393216, 940032, 2224128, 5214208, 12124160, 27983872, 64159744, 146210816, 331350016, 747110400, 1676673024, 3746562048, 8338276352, 18488492032
Offset: 0

Views

Author

Keywords

Comments

If X_1, X_2, ..., X_n are 2-blocks of a (2n+3)-set X then, for n >= 1, a(n+1) is the number of (n+3)-subsets of X intersecting each X_i, (i=1,2,...,n). - Milan Janjic, Nov 18 2007

References

  • Robert Cori, Gabor Hetyei, Genus one partitions, in 26th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2014), 2014, Chicago, United States. Discrete Mathematics and Theoretical Computer Science, DMTCS Proceedings vol. AT, pp. 333-344,

Crossrefs

Cf. A049600.
Row sums of triangle A055252. a(n+1) = A055584(n, 0), n >= 0.

Programs

  • Mathematica
    CoefficientList[Series[x (1-x)^3/(1-2x)^4,{x,0,30}],x] (* or *) Join[ {0},LinearRecurrence[{8,-24,32,-16},{1,5,19,63},30]] (* Harvey P. Dale, Jan 07 2014 *)

Formula

G.f.: x*(1-x)^3 /(1-2*x)^4.
a(n) = Sum_{k=0..floor((n+3)/2)} C(n+3, 2k)*C(k+1, 3). - Paul Barry, May 15 2003
a(n+1) = 2^n*n^3/48 + 5*2^n*n^2/16 + 7*2^n*n/6 + 2^n, n>=1. - Milan Janjic, Nov 18 2007
Binomial transform of the tetrahedral numbers A000292 when omitting the initial 0 in both sequences. - Carl Najafi, Sep 08 2011